KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE- UNIVERSITY

PHYSICS

COURSE CODE: PPHYS 021

- COURSE TITLE: MECHANICS
- STREAM: SEMESTER TWO
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 09/12/2009

INSTRUCTIONS:

Answer question **ONE** and any other **TWO**. Take $g = 10 \text{ m/s}^2$

PLEASE TURN OVER

QUESTION 1 (30 MARKS)

(i)	i) Distinguish between a scalar and a vector and give an example of each				
			(3 mks)		
(ii)	Ех				
	I. (Contact force	(1 mks)		
	II. I	(1 mks)			
(iii)	Ех	(6 mks)			
(iv)	I.	state Hooke's law	(1 mk)		
	II.	Show that the potential energy stored in a stretched or com	pressed spring		
		is given by $PE = \frac{1}{2}kx^2$ where k is the spring constant and x	x is the		
		compression or the stretch.	(4mks)		
(v)	I.	Define Power.			
	II.	Explain the difference between instantaneous power and av	verage power.		
			(2 mks)		
(vi)	Pr	ovide a comparison between equations of linear and equation	ns of angular		
	m	otion.	(6 mks)		
(vii)	A sli	bicycle wheel of radius $r = 1.5$ m starts from rest and rolls 1 pping in 30 s. Calculate	00 m without		
	I. t	he number of revolutions the wheel makes,	(2 mks)		
II. the number of radians through which it turns, (2 mk					
III. the average angular velocity. (2 mks)					

QUESTION 2 (20 MARKS)

(a) State the differences between instantaneous velocity and average velocity.

(2 marks)

(b) Table 1 gives data on the position of a runner on a track at various times.

Table 1: Time and position for a runner.				
t(s)	x(m)			
1.00	1.00			
1.01	1.02			
1.10	1.21			
1.20	1.44			
1.50	2.25			
2.00	4.00			
3.00	9.00			

- (i) Plot the distance time graph based on the data in Table 1.
- (ii) Find the runner's instantaneous velocity at t = 1.00 s.

(iii) F the average velocity for the total observed part of the run.

(8 marks)

(c) (i) State the 3 Newton's laws of motion (3 marks) A 4 kg mass travelling at constant velocity 15 m/s has a 10 N force (ii) applied to it against the direction of motion. Sketch a diagram illustrating the situation. I. (1 mark)II. What is the deceleration produced? (3 marks) III. How long will it take before the mass is brought to rest? (3 marks)

QUESTION 3 (20 MARKS)

(a)	Define and give an example of each of the following:				
	(i)	Conservative force	(3 marks)		
	(ii)	Non-Conservative Force	(3 marks)		

- (b) (i) Define impulse and show that *impulse* = $m\Delta v$ where m is mass and Δv is change in velocity. (3 marks)
 - (ii) A particle of mass 0.5 kg moves with a constant velocity of (3i + 5j) m/s. After being given an impulse, the particle then moves off with a constant velocity of (2i - 3j) m/s.

Calculate:

I.	the impulse	(5 marks)
II.	the magnitude of the impulse	(3 marks)
III.	the direction of the impulse(degrees to the x-axis)	(3 marks)

OUESTION 4 (20 MARKS)

(a)	When is a collision said to be			
	(i)	Elastic	(2 marks)	
	(ii)	Inelastic	(2 marks)	

(b) A driver of a car breaks suddenly just before hitting a pedestrian. A traffic policeman rushes to the scene to measure the distance the tyres skid as a result of breaking. Explain how the policeman would use the data to estimate the speed of the car just before the accident. (4 marks)

- (b) A 1.0 kg object travelling at 1.0 m/s collides head on with a 2.0 kg object initially at rest.
 - (i) Find the velocity of each object after impact if the collision is perfectly elastic (6 marks)
 - (ii) Suppose the collision in the previous problem was completely inelastic. Find
 - I. the velocity of the objects after impact and (3 marks)
 - II. the fraction of the kinetic energy lost during the collision.

(3 marks)