

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 312
COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS
STREAM: SESSION VI \& VII
DAY:
TUESDAY
TIME:
9.00-11.00 A.M.

DATE:
12/04/2011

INSTRUCTIONS:

1.Question ONE is compulsory.
2. Attempt question ONE and any other TWO

QUESTION ONE: 30 MARKS

a. Find the particular solution to $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ given that $y=1$ when $x=1$
b. Show that the given equation is an exact equation and hence find the general solution.

$$
\frac{t^{2}}{x} \frac{d x}{d t}+2 t \ln x=3 \cos t
$$

c. Find the general solution of

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=2 x \frac{d y}{d x} \tag{6marks}
\end{equation*}
$$

d. Define an auxillary quadratcequation and hence solve

$$
\begin{equation*}
2 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-3 y=0 \tag{4marks}
\end{equation*}
$$

e. Determine the solution of the following non-homogeneous equation by the method of variation of parameter

$$
\frac{d^{2} y}{d x^{2}}+y=\tan x \sec x
$$

f. Solve $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x\right)$

QUESTION TWO: 20 MARKS

a. Certain ODE are not exact but can be made exact y multiplying with an intergrating factor. Derive an expression for the factor.
b. Mr. Africaanmann retired last year at an age of 65 years. His initial retirement account has a principal of 9,000 (Ksh. ' 000), which was invested with a guaranteed interest rate of 5.25\%
compounded continously. His badget calls for annual expenses of Ksh.200, 000 with projected inflation rate of 2.5%. Calculate
i. The balance in the account t years after his retirement.
ii. The time taken to use the entire amount in the account.
[10 marks]

QUESTION THREE: 20 MARKS

a) The following equation is related to biophysical limitations in the study of deep diving

$$
y^{\prime}=A Y+B+B e^{-a x}
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{A}$ and B are constants show that the general solution of this equation is given by

$$
y^{\prime}=-\frac{B}{A}-\frac{b}{a+A} e^{-a x}+c e^{A x}
$$

Where c is an arbitrary constant.
[8 marks]
b) The population of a constituency in 1994 and 2000 was 120,000 and 180,000 respectively. Find the year wen the population was $5^{1} / 3$ ten thousands, if the rate of growth is proportional to the population.
c) Find the particular intergral given that

$$
\begin{equation*}
\left(D^{3}+1\right) y=\cos (2 x-1) \tag{6marks}
\end{equation*}
$$

QUESTION FOUR: 20 MARKS

a) Find the particular solution to the equation given that when $x=0, y=5$ and $\frac{d y}{d x}=23$

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-15 y=0
$$

b) Show that the general solution to an ordinary differential equation whose auxilary equation has complex roots $p \pm i q$ is given by $y=e^{p x}(A \cos q x+B \sin q x)$ where A and B are constants.

QUESTION FIVE: 20 MARKS

a) By using suitable transformation to reduce the equation to a separable equation, solve

$$
\begin{equation*}
\left(2 x^{3}+y^{3}\right) d x-3 x y^{2} d y=0 \tag{8marks}
\end{equation*}
$$

b) Eliminate the constants to obtain the general equation whose general solution is

$$
y=c_{1} x^{2}+c_{2} e^{2 x} \quad \text { where } \mathrm{c}_{1} \text { and } \mathrm{c}_{2} \text { are arbitrary constants. } \quad[6 \text { marks }]
$$

c) By using a suitable integrating factor solve

$$
\left(3 x^{4} y-1\right) d x+x^{5} d y=0 \text { when } x=1, y=1 .
$$

[6 marks]

