KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 324

COURSE TITLE: SAMPLE SURVEYS

STREAM: Y3S2

DAY:

TIME:

DATE:

INSTRUCTIONS:

Answer Question ONE and any other TWO

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) What do you understand by the following terms?

i) Sampling and Census	(2 marks)
ii) Sample unit	(2 marks)
iii) Sample frame	(2 marks)
iv) Sample design	(2 marks)
v) Pilot Survey	(2 marks)

b) Proof that the probability of a specified unit being chosen in a sample of size n from a

population of size N is $\frac{n}{N}$	(4 marks)
c) i) What is Stratified Sampling	(3 marks)
ii) Show that \overline{y}_{ω} is an unbiased estimator of \overline{Y}	(5marks)

d) Show that $E(\overline{z})$ is equal to \overline{Y} in probability proportional to size (pps) with replacement (5marks)

QUESTION TWO (20 MARKS)

- a) Under stratified random sampling without replacement, verify that
 - i) $Var(\overline{y}_{\omega}) = \frac{1-f}{n} \sum_{i=1}^{H} W_i S_i^2$ under proportional allocation (8marks)

ii) The Neyman formula for optimum allocation is $n_i = \frac{nN_iS_i}{\sum_{i=1}^{H}N_iS_i}$ where H is the

total number of strata, S_i^2 is the population variance for the survey measurements in the i-th stratum and N_i is the number of units in the i-th stratum (12 marks).

QUESTION THREE (20 MARKS)

a) Under simple random sampling without replacement, show that

$$E(s^2) = S^2$$
 (12 marks)
b) Proof that the probability of selecting a sample of size n from a population of size

N is
$$\frac{1}{NC_n}$$
 (8 marks)

QUESTION FOUR (20 MARKS)

- a) Explain how double sampling is done (5 marks) b) Under double sampling, $\overline{y}_{st} = \sum_{h=1}^{H} W_h \overline{y}_h$ is unbiased estimator of \overline{Y} (7 marks)
- c) Describe the use of random numbers and lottery methods in drawing samples from a population (8 marks)

QUESTION FIVE (20 MARKS)

Under PPS, a common estimator is the Horvitz- Thomson estimator(HV) defined by $\overline{y}_{HT} = \frac{1}{N} \sum_{i=1}^{n} \frac{y_i}{\pi_i}$ where π_i is the inclusion probability.

i) show that \overline{y}_{HT} is unbiased estimator for $\overline{y}_{HT} = \frac{1}{N} \sum_{i=1}^{n} y_i$

ii) Derive the variance for \overline{y}_{HT}