JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS

END SEMESTER EXAMINATIONS

BECHELOR OF EDUCATION SCIENCE

YEAR 3 SEMESTER 1
 AUGUST 2013

SPH302: THERMODYNAMICS

(REGULAR PROGRAM)
This paper consists of FIVE Questions. Answer QUESTION ONE (COMPULSORY) and any other TWO Questions.

QUESTION ONE (Compulsory)
(30 Marks)
a. Describe the following classifications of thermodynamic properties citing an example of each:
i. Intensive properties
ii. Extensive properties
b. Define the following thermodynamic properties:
i. Enthalpy
ii. Entropy
c. Describe the following types of thermodynamic systems:
i. Isolated system
ii. Closed system
iii. Open system
(3 marks)
a. Describe the following terms concerning thermodynamic processes:
i. Adiabatic process
ii. Isentropic process
iii. Throttling process
b. Briefly explain the following laws of thermodynamics
(3Marks)
i) The zeroth law
ii) The first law, and
iii) The second law
c. Explain the Maxwell's relations of thermodynamics.
d. Briefly define the following thermodynamics potentials.
i) Helmoltz free energy
ii) Gibbs function
e. Draw both a P-V and T-S diagrams for a Carnort Cycle of an ideal gas and explain all the processes involved.
f. The speeds of 10 molecules are $12,14,15,15,18,19,20,21,22$ and 25 .Find the root mean square speed.
(3 Marks)

QUESTION TWO

(20 Marks)
a. Show that the pressure P exerted by a gas of density p on the walls of its container is given by

$$
\begin{equation*}
P=\frac{1}{3} \rho \bar{v}^{2} \tag{6marks}
\end{equation*}
$$

b. The speeds of 10 molecules of a gas are $2,4,5,15,8,9,20,21,22$ and $25 \mathrm{~m} / \mathrm{s}$. Given that its density is $2.5 \mathrm{~kg} / \mathrm{m}^{3}$, determine the pressure exerted by the gas on the walls of the container.
(4 marks)
c. Starting with the first law of thermodynamics and the definitions of c_{p} and c_{v} show that

$$
c_{p}-c_{v}=\left[P+\left(\frac{\partial U}{\partial V}\right)_{T}\right]\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Where c_{p} and c_{v} are the specific heat capacities per mole at constant pressure and volume, respectively, U and \boldsymbol{V} are energy and volume of one mole.

QUESTION THREE

(20 Marks)
a. State and explain the four thermodynamic potentials in their differential forms (10 marks)
b. Show that for a closed system where the only work is the displacement work, the internal energy U, Helmholtz function F, Gibbs function G and temperature T are related as follows

$$
\begin{aligned}
& U=F-T\left(\frac{\partial F}{\partial T}\right)_{V} \\
& G=F-V\left(\frac{\partial F}{\partial V}\right)_{T}
\end{aligned}
$$

Which are known as the Gibbs-Helmholtz equations

QUESTION FOUR

(20 Marks)
a. A mass of ideal gas at $15^{0} \mathrm{C}$ occupies $400 \mathrm{~cm}^{3}$. If its temperature falls to $0^{\circ} \mathrm{C}$ when it expands adiabatically, what is the new volume if $\gamma=1.4$?

If it is then compressed isothermally until its pressure returns to the original value, calculate the final volume.
b. Calculate molar specific heats c_{p} and c_{v} of oxygen given that the $\gamma=1.4$ and density at S.T.P is $1.43 \mathrm{kgm}^{-3}$
(6 marks)

QUESTION FIVE

(20 Marks)
a. Given that entropy is a function of temperature and pressure only, that is $S=S(T, P)$, use appropriate Maxwell's relation to show that
(10 Marks)

$$
T d S=C_{P} d T-T\left(\frac{\partial V}{\partial T}\right)_{P} d P
$$

b. Show that during a reversible isothermal expansion of an ideal gas from 1to V2 there is a corresponding change of entropy given by

$$
\begin{equation*}
\Delta S=\int\left(\frac{\partial P}{\partial T}\right)_{V} d V \tag{10Marks}
\end{equation*}
$$

