

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2015/2016

FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF BACHELOR OF SCIENCE IN COMPUTER TECHNOLOGY

MAIN CAMPUS

CCT 112: ELECTRONICS II

Date: 21st April, 2016

Time: 8.30 - 10.30am

INSTRUCTIONS:

Answer ALL Question in Section A and any other TWO from Section B.

ISO 9001:2008 CERTIFIED

Question 1(30mks)

8	1)	Under the headings, input resistance, voltage gain, output resistance, following amplifier configurations:	compare the
		i) emittee 6.1	

emitter-folower (common colector) i) ii)

common-emmitter

iii) common-base

(9mks)

- Calculate the following power levels in dBm b)
 - 1mW (2mks)
 - ii) 1W (2mks)
 - iii) 10W (2mks)
- Derive the overal voltage gain of two voltage amplifiers connected in series (7mks) c)
- Sketch the ac equivalent circuit of a common-emitter amplifier and derive equations for, d)
 - 1) Input resistance, Rin (3mks)
 - Open circuit voltage gain, A, (2mks) ii)
 - iii) Ro. (3mks)

Question 2(20mks)

- a) List any THREE differences between BJTs and FETs (3mks)
- b) A JFET circuit is described as follows: The drain is connected to +VDD(= 12 V) through a resistor(R_d); The gate is connected to ground through a large resistor; the source is connected to ground through a 2k resistor.
 - 1) Sketch the circuit (9mks)
 - Calculte the value of R_d if $I_d = 1mA$ (8mks) ii)

Question 3(20mks)

- Sketch the schematic circuit of the following and explain their operation :
 - class A power amplifier (5mks)
 - class B power amplifier (5mks)
- Show that the efficiency of a class B amplifier is 78.5% (10mks)

Question 4(20mks)

Given the class A amplifier of Fig Q4, calculate its efficiency

Question 5(20mks)

- a) Sketch the amplifier equivalent circuit of Fig Q4 and calculate R_{in} , $A_{v_{i}}R_{o}$ (10mks)
- Calculate the power delivered to a load of 5k when the amplifier is driven from a 10 mV source with an internal resistance of 1k3 (10 mks)