

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2015/2016

SECOND YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER TECHNOLOGY

MAIN CAMPUS

CCT 214: SIGNALS AND SYSTEMS

Date: 26th April, 2016

Time: 11.00 - 1.00 pm

INSTRUCTIONS:

- Answer question ONE and any other TWO questions.
- Write your registration number on all sheets of the answer book used.
- Use a NEW PAGE FOR EVERY QUESTION attempted, and indicate number on the space provided on the page of the answer sheet.
- Fasten together all loose answer sheets used.

ISO 9001:2008 CERTIFIED

Question One(30mks)

- a) List any FOUR ways of classifying a signal (4mks)
- Define the following as applied to systems and give one example of each:
 - i) memoryless (2mks)
 - ii) causal (2mks)
 - iii) time-invariant (2mks)
 - iv) stable (2mks)
 - v) Linear (2mks)
- Determine if the following signals are periodic. If yes, determine the fundamental period.

(i)
$$g_1(t) = 3 \sin(4_t) + 7 \cos(3_t)$$
; (5mks)

(ii)
$$g_2(t) = 3 \sin(4_t) + 7 \cos(10t)$$
. (5mks)

d) Sketch the following signals:

ii)

$$i) \qquad u(t) = 1; \ t \ge 0$$

$$r(t) = tu(t) = t; t \ge 0$$

 $0; t < 0, (2mks)$

iii)
$$x(t) = \sin(\omega_t + \Theta) (2mks)$$

Question Two(20mks)

Consider an LTI system with impulse response h[n] and input x[n] given as follows:

0; otherwise

$$x[n] = 0.5; n = 0$$

$$2; n = 1$$

0; otherwise

- a) Sketch both h[n] and x[n] (6mks)
- b) Compute the output of the system(the convolution sum)

y[n] = h[n]*x[n]and sketch y[n]

Question Three(20)

- a) Write the equation for computing the Dicrete Fourier Transform(DFT) of a sequence (4mks)
- Calculate the four-point DFT of the speriodic sequence x[k] of length N = 4, which is defined as follows:

$$x[k] = 2 ; k = 0$$

3; 4=1

-1; k = 2

1; k = 3. (12mks)

ii) Sketch both x[k] and its DFT (4mks)

Question Four(20mks)

- Write the equation for computing the Z-transform of a sequence and explain what is meant by region of convergence (6mils)
- b) Let x[n] be causal signal given by

$$x[n] = a^n u[n]$$

Compute its Z-tnsform and sketch the ROC (14 mks)

Question Five(20mks)

- a) Calculate:
 - instantaneous power (5mks)
 - ii) average power (5mks)

$$y[n] = h[n]*x[n]$$

and sketch $y[n]$

Question Three(20)

- a) Write the equation for computing the Dicrete Fourier Transform(DFT) of a sequence (4mks)
- Calculate the four-point DFT of the speriodic sequence x[k] of length N = 4, which is defined as follows:

$$x[k] = 2$$
; $k = 0$

$$-1; k = 2$$

1;
$$k = 3$$
. (12mks)

ii) Sketch both x[k] and its DFT (4mks)

Question Four(20mks)

- Write the equation for computing the Z-transform of a sequence and explain what is meant by region of convergence (6mks)
- b) Let x[n] be causal signal given by

$$x[n] = a^n u[n]$$

Compute its Z-tnsform and sketch the ROC (14 mks)

Question Five (20mks)

- a) Calculate:
 - instantaneous power (5mks)
 - average power (5mks)

iii) energy (5mks)

of the following signals and hence classify them as either energy or power signals.

$$x_1(t) = 5$$
; $-2 \le t \le 2$
0; otherwise.

$$x_0[k] = e^{-i \cdot k} : k \ge 0$$

 $0; k \le 0.$

b) Sketch both signals in (a) above. (5mks)