

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2015/2016

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

CITY CAMPUS

MAS 818: TIME SERIES ANALYSIS

Date: 21st February, 2015

Time: 9.00 - 12.00 noon

INSTRUCTIONS:

Answer ANY THREE questions.

MASTER OF SCIENCE IN APPLIED STATISTICS

MAS 818 TIME SERIES ANALYSIS

ANSWER ANY THREE QUESTIONS

- 1. A)Show that the AR(2) series will exhibit exponential decay as $\mu
 ightarrow \infty$ (Marks 10)
- · · B)Show that the autocovariance function of an AR(p) series yields a linear homogenous difference equation and state its general solution (Marks 10)
- A) Derive the autocorrelation function of the ARMA(1,1) series
 - (Marks 10) B) Consider the k^{th} order autoregressive prediction of X_{k+1} i.e $\hat{X}_{k+1} = \emptyset_{k_1} X_k + \cdots + \emptyset_{kk} X_1$

obtained by minimizing $E(X_{k+1} - \tilde{X}_{k+1})^2$. Show that the K th partial autocorrelation value is given by $\emptyset(k) = \emptyset_{kk}$ (Marks 10)

- Suppose (X_t) is a stationary and invertible ARMA (p, q) model
 - A) Derive an l-step ahead forecast function {X_{t+l}} from the origin t and the corresponding lstep ahead forecast error $\{\varepsilon_t(t)\}$. (7 marks)
 - B) Show that the minimum mean square forecast function of $X_{t+\ell}$ is given by the conditional mean
 - $X_t(l) = E(X_{t+l}/Ft)$ Where Ft is the history of the process. (Marks 14)
 - C) For the ARMA(1,1) process given by the equation $X_t 0.6X_t = Z_t + 0.3Z_{t-1}$, $Z_t \sim N(0, \sigma^2)$ find the stationary and invertible solutions. Hence or otherwise find $Var(X_t)$ (7 marks)
- A) Evaluate the spectral density function of an AR(2) process given by
 - $X_t = \alpha_1 X_{t-1} + \alpha_2 X_{t-2} e_t$ (7marks) B) Let $X_{\rm t}=a+bt+ct^2+e_{\rm t}$, where a,b and c are constants use the differencing method to remove the quadratic tend (6marks)
 - C) Evaluate ΔX_t in $X_t=\,e^{\,i\lambda t}$ by differencing, hence describe the changes in amplitude and phase angle. (7marks)
- 5. A) Derive the Box- Jenkins general forecasting methodology generated by a stationary autoregressive moving average (ARMA) process.
- B) Transform a moving average filter $\{X_t\}$ into another series $\{Y_t\}$ by the linear operator given

$$X_t = e^{i\lambda t}$$
 and $Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}$

$$a_j = \begin{cases} \frac{1}{2m+1}, & j = 0, \ \mp 1, \mp 2, \dots, \ \mp m \\ 0, & otherwise \end{cases}$$

[10marks]