

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2013/2014

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE

(MAIN CAMPUS)

MMA 805: GENERAL TOPOLOGY I

Date: 11th December, 2013

Time: 9.00 a.m. - 12.00 noon

INSTRUCTIONS:

- Answer Question ONE and any other TWO questions.
- · Start each question on a fresh page.
- · Indicate question numbers clearly at the top of each page.

Question One (30 marks):

 (a) Outline the procedure for showing that a point p in a topological space (X, τ) is a limit point of a subset A ⊂ X.

(3 marks)

(b) Let X be an arbitrary infinite set. Define the class B of subsets of X by

 $\mathcal{B} := \{O \subset X : X \setminus O \ is \ finite\} \cup \{\emptyset, X\}$

Show that B is a topology in X.

(3 marks)

(c) Let X := {a, b, c, d, e} and consider the topology

$$\tau := \{\{a, b\}, \{b, c\}, \{b\}, \{a, b, c\}, \emptyset, X\}.$$

further, let $B := \{a, c\}$. Compute the boundary of B. (3 marks)

- (d) Explain what is meant by a property of a family of subsets of a topological space (X, τ) being topological. Give an example of properties which are <u>not</u> topological. (3 marks)
- (e) Distinguish between identification topology and relative topology.
 (6 marks)
- (f) Show that a regular space need not be T₁-space.

(3 marks)

Question Two (20 marks):

- (a) Give an example to show that an open map is not necessarily continuous. (6 marks)
 - (b) Let (X,τ_X), and (Y,τ_Y) be topological spaces. Suppose f : X → Y is a map with property:

for each point $p \in X$ and any neighbourhood N_p of pthere corresponds a neighbourhood $N_{f(p)}$ of f(p) such that $f(p) \in N_{f(p)} \subset f(N_p)$.

Show that f is open

(8 marks)

(c) Define what is meant by a homeomorphism.

Let $f: X \mapsto Y$ be a bijective map which has the property:

$$f(\overline{A}) = \overline{f(A)} \quad \forall A \subset X$$

Show that f is a homeomorphism.

(6 marks)

Question Three (20 marks):

(a) Let X := [-1,1] ⊂ R and (X,τ) be a topological space with τ being relative topology on X with respect to the usual topology in R. Further let f : X → {0, 1} be the characteristic map on [½, 1] ⊂ X. Show that the identification topology on {0,1} induced by f coincides with the Sierpinsky's topology in {0,1}.

(5 marks)

- (b) Let (X, τ_X) and (Y,τ_Y) be topological spaces and f : X → Y be an identification. Show that f is open iff f⁻¹(f(B)) is open for each open B ⊂ X (8 marks)
- (c) Give an example to show that a Housdorff space is not necessarily regular. (7 marks)

(d)

Question Four (20 marks):

- Let X be a Housedorf space. Show that:
 - (a) Each finite subset of X is closed.

(6 marks)

(b) For each A ⊂ X, a point p ∈ X is a limit point of A iff each neighbourhood of p contains infinitely many points of A.

(14 marks)

Question Five (20 marks):

- (a) Let X be an arbitrary set. Suppose the class B of subsets of X has the properties
 - X = ∪{B:B∈ B}.
 - ii. ∀ B₁, B₂ ∈ B, B₁∩B₂ is expressible as a union of members of B
 - (a) Show that B is a base for a topology on X.

(14 marks)

(b) Is the converse true?

(6 marks)