

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2013/2014

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS (MAIN CAMPUS)

MMA 817: ORDINARY DIFFERENTIAL EQUATIONS I

Date: 16th December, 2013

Time: 9.00 - 12.00 noon

INSTRUCTIONS:

- Answer ANY THREE questions.
- · Start each question on a fresh page.
- Indicate question numbers clearly at the top of each page.
- · Observe further instructions on the answer booklet.

Question One: (20 marks)

- (a)
- (i) Prove the following statement: The continuously differentiable functions
 y₁(t), y₂(t): (t₁, t₂) → ℝ are linearly dependent iff W_{y132}(t) = 0 holds
 for all t ∈ (t₁, t₂)

Find the Wronskian of the functions

- (ii) $y_1(t) = \sin t \text{ and } y_2(t) = 2 \sin t$
- (iii) $y_1(t) = \sin t$ and $y_2(t) = t \sin t$

[7 marks]

(b) Find two linearly independent solutions of the equation

$$y'' + y' - 2y = 0$$

[4 marks]

(c) Prove that if a₁, a₀: (t₁, t₂) → R are continuous functions, and y₁, y₂ are twice continuously differentiable solutions of the equation

$$y'' + a_1(t)y' + a_0(t)y = 0$$

Then the Wronskian is a solution of the equation

$$W'_{y_1y_2}(t) + a_1(t)W_{y_1y_2}(t) = 0$$

Therefore, for any $t_0 \in (t_1, t_2)$, the Wronskian is given by the expression

$$W_{y_1y_2} = W_0e^{A_1(t)}$$

where $W_0=W_{y_1y_2}(t_0)$ and $A_1(t)=\int_{t_0}^t a_1(\tau)d\tau$

[9 marks]

Question Two: (20marks)

(a) Find the real-valued fundamental solutions of

$$\frac{d^2I}{dt^2} + 2\alpha \frac{dI}{dt} + \omega^2 I = 0$$

where

$$\alpha = \frac{R}{(2L)}$$

$$\omega^2 = \frac{I}{(LC)}$$

in cases (i) and (ii) below

Question Five (20 marks)

(a) Find the functions x₁, x₂ solutions of the first order, 2 × 2, constant coefficients, homogeneous differential system

$$x_1' = x_1 - x_2$$

$$x_2' = -x_1 + x_2$$

[12 marks]

(b) Express the second order equation

$$y'' + 2y' + 2y = \sin(at)$$

as a first order system

10

[8 marks]

(i) Case (a): R = 0

(ii) Case (b): $R < \sqrt{4L/C}$

[12 marks]

(b) Find the solution to the initial value problem

$$9y'' + 6y' + y = 0$$
, $y(0) = 1$, $y'(0) = \frac{5}{3}$

[8 marks]

Question Three: (20 marks)

(a) Find a second solution y₂ linearly independent to the solution y₁(t) = t of the differential equation

$$t^2y'' + 2ty' - 2y = 0$$

[12 marks]

(b) Find all solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

[8 marks]

Question Four: (20marks)

(a) Define the following terms (i) linear differential equation (ii) Wronskian [4 marks]

(b) Find the general solution of the following inhomogeneous differential equation

 $y'' - 5y' + 6y = 2e^{1}$

using the method of variation of paremeters

[16marks]