

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2013/2014

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS (MAIN CAMPUS)

MMA 839: NUMERICAL ANALYSIS I

Date: 11th December, 2013

Time: 9.00 - 12.00 noon

INSTRUCTIONS:

- Answer ANY THREE questions.
- · Start each question on a fresh page.
- Indicate question numbers clearly at the top of each page.
- Observe further instructions on the answer booklet.

Question One: (20 marks)

(a) Define the term truncation error. Write down Taylor series for a function f(x) expanded a round a general point x_n. Obtain a second degree polynomial that approximates

$$f(x) = \sqrt{1 + x}, x \in [0, 0.1]$$

using Taylor series expansion about x = 0. Use the result to approximate f(0.05) and bound the truncation error [10 marks]

(b) What is an ill-conditioned system? Solve the system below by Gaussian elimination using 5 significant figures

$$x_1 + 5x_2 = 17$$

$$1.500x_1 + 7.501x_2 = 25.503$$

Hence improve accuracy in one step.

[10 marks]

-

Question Two: (20marks)

(a) Find the eigenvalues and an eigenvector corresponding to the least eigenvalue of the matrix A given by

$$A = \left[\begin{array}{ccc} 3 & 2 & 5 \\ 6 & -5 & 3 \\ -24 & 38 & 2 \end{array} \right]$$

[10 marks]

(b) Determine the dominant and least eigenvalues of

$$A = \left[\begin{array}{rrr} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{array} \right]$$

using iteration. Use 2 significant figures in your computation [10 marks]

Question Three: (20 marks)

(a) Solve the system of linear equations

~ (S) ~ (S)

$$1.4x_1 + x_2 + 50x_3 = 56.2$$

$$27.1x_1 + 6x_2 - x_3 = 92.3$$

$$1.6x_1 + 12x_2 + x_3 = 29.8$$

by Gauss-Seidel iteration. When do you stop the iteration?

[11 marks]

-

(b) Solve the same system in (a) above by SOR method using $\omega = 1.01$ [9 marks]

Question Four: (20marks)

(a) Use Lagrange interpolation to find the second degree polynomial passing through the points

Hence determine the value of f(2).

[6 marks]

(b) Prove the following relation

$$E = (1 - \nabla)^{-1}$$

and hence derive the Newton Backward Difference Formula. Using the formula obtain a polynomial for the following data

[14marks]

Question Five (20 marks)

(a) Given a 2 × 2 matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Find its eigenvalues and eigenvectors

[5 marks]

(b) Use the power method to determine the spectral radius of the matrix

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array} \right]$$

3

[15 marks]