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INSTRUCTION
Answer question @NE and any other THO questions in section B.
SECTION A
QUESTION ONE (30 MARKS )
1) (I) Given that = = x*y* + 3=y, determine E and :—; (2 marks)
(I) Given a function = fx,, 5, ..x,), write an expression for the total
differential {1 mark})
ey
b} (I} Evaluate {:.-::) leaving your answer in the form a + (b, (3 marks)
{II) Show that F{z) = 2% is analytic. {2 marks)
(IITy Define the following terms.
(i) Power series (1 mark)
{ii} Ezsential singularity (2 marks)
(T%") State the fundamental theorem of algebra. (1 mark)
Z01
¢} (I)Find the determinant of | ¥ O ﬁ) (4 marks)
Z31
(I} Given the system of linear equations
ay %y tayx; = ay
by, + By, = By, oblain an expression for x5 in form of a ratio of two
determninanis. (3 marks)
d} Define the following terms:
(T) Eigenvalue and eigenvesior (2 marks)
(IT) Hilksert space {1 murk)

Fage 1 of 3



e) Show that in a Fourier series of a function f(x) in the interval [-# P], the Fourier
coefficient @y is given by

ag == [0, £ (o (4 marks)
f) (I) Define a first order linear Ordinary differential equation, (1 mark)
(11} Solve the equation g +ym=e” (3 marks)
SECTION B
Answer ANY TWO questions in this section.
QUESTION TWO (20 MARKS)
a) Determine the partial second derivatives of f(x, ) = e®* cos(y — x), hence show
that the second partial derivative is a commutative operation. (9 marks)
b) Derive the De Moivre's theorem. (5 marks)
¢) Find the cuberoot of 8. (6 marks)
QUESTION THREE (20 MARKS )
a) Derive the Cauchy Riemann Equations from first principles. (9 marks)
b) Expand m in a Laurent series about the point Z = —1 (7 marks)

c) Define the term * determinant of a 2 x 2 matrix’, hence find the determinant of the
matrix

2 X
(; 1 - ) (4 marks)
4 0 1

QUESTION FOUR (20 MARKS )
a) (I) Name an eigen value equation in quantum mechanics, (1 mark)
o 1 0
(I) Let A = (g -1 —1) Find the eigen values of A and the associated
a 1
cigenvectors, (12 marks)

b} Show that the differential equation
(x? + y*)dx + 2xydy = 0 is exact,

hence solve it. (7 marks)
QUESTION FIVE ( 20 MARKS )
a) Diagonalize the matrix . —pq) where p and g are real numbers and ¢ =0
(14 marks)
b) Define a Fourier series of a function f(x)} . (2 marks)

¢) Given the box function which can represent & single pulse,
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flx) = ﬂ: ;4;':_;’1: — , find the Fourier transform of () (4 marks)
END
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