

MASENO UNIVERSITY

UNIVERSITY EXAMINATIONS 2012/2013

SECOND YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION WITH INFORMATION TECHNOLOGY (HOMA BAY CAMPUS)

SMA 201: LINEAR ALGEBRA II

Date: 27th July, 2013

Time: 2.00 - 4.00 p.m.

INSTRUCTIONS:

- Answer Question ONE and any other TWO questions.
- · Start each question on a fresh page.

. .

· Indicate question numbers clearly at the top of each page.

Question One

[Compulsory, 30mks]

- (a) Define a vector space and show that (Z₅)³, the set of all vectors of length 3 is a vector space over the field Z₅. (5mks)
- (b) Define a linear transformation. Suppose that T : U → V is a linear transformation, show that T(0) = 0. (5mks)
- (c) Define an eigenvector of a matrix A of size n × n and hence compute all the eigenvectors of the matrix

$$A = \begin{bmatrix} 2 & \frac{1}{2} \\ -1 & 3 \end{bmatrix}$$
, .

(5mks)

- (d) Define a symmetric matrix and show that if a matrix A is symmetric then it is square. (5mks)
- (e) Suppose that A is a square matrix with a row or a column where every entry is zero, prove that det(A) = 0. (5mks)
- (f) Suppose that A and B are invertible matrices, show that (AB)⁻¹ = B⁻¹A⁻¹. (5mks)

Question Two

[20mks]

(a) Let

$$F = \{a + bt + ct^2 \mid a, b, c \in \mathbb{Z}_2\}.$$

Assume that the addition and multiplication of the elements of F are defined like those of polynomials in the variable t. If t^3 is replaced by t + 1, show that F is a field of size 8. (12mks)

(b) Suppose that A and B are m × n matrices such that Ax = Bx for every x ∈ Cⁿ show that A = B. (8mks).

Question Three

[20mks]

- (a) Let S₂₂(Z₇) be the set of all symmetric 2 × 2 matrices over the field Z₇. Prove that S₂₂(Z₇) is a vector space with the usual matrix addition and scalar multiplication and hence determine the number of matrices in S₂₂(Z₇) as well as dim(S₂₂(Z₇)). (10mks)
- (b) (i) State Cayley-Hamilton theorem for a linear operator T.
 - (ii) If T is defined by T([x, y]^t) = [x + 2y, 2x + y]^t write the matrix A representing T and use it to verify Cayley-Hamilton theorem.
 - (iii) Apply Cayley-Hamilton theorem to evaluate the polynomial

$$P(A) = A^4 - 7A^3 - 3A^2 + 4A + 4I.$$

(10mks)

Question Four

[20mks]

- (a) Suppose that A is a square matrix, show that A has at least one eigenvalue. (10mks)
- (b) Let T: R³ → R³ be a linear transformation defined by T([x, y, z]^t) = [4x + z, 2x + 3y + 2z, x + 4z]^t. Find a matrix A representing T and determine an invertible matrix P and a diagonal matrix D such that P⁻¹AP = D. (10mks)

Question Five

[20mks]

(a) If A is a square matrix of size n and E is any elementary matrix of size n show that

$$det(EA) = det(E) \cdot det(A)$$
.

(10mks)

(b) Given that T: Rⁿ → Rⁿ be a linear operator with matrix A of representation. If T([x, y, z]^t) = [5x + y + 2z, -4x - 2z, -4x - y - z]^t. Find all the eigenvalues and the corresponding eigenvectors of T. (10mks)