

MASENO UNIVERSITY

UNIVERSITY EXAMINATIONS 2012/2013

PRE-UNIVERSITY ENTRANCE EXAMINATION

SCH 00100: CHEMICAL STRUCTURES AND PERIODICITY

Date: 13th August, 2013

Time: 2.00 - 4.00pm

INSTRUCTIONS:

· Answer ANY FOUR questions.

1. (a)	Proto	on numbers of some elements N, O, P, Q, R and W (not their nical symbols) are given as 4, 14, 18, 19 and 9 respectively.	real		
65	(i) Pr	esent the shell electronic configuration of for each of these			
	el	ements.	(5 mks)		
	(ii) Gi	ive the noble gas electron arrangement of these elements.	(2.5 mks)		
	(iii) Deduce the group (I-VIII) to which each of the elements belong. (5				
	(iv)St	ate the period to which each of the elements belong,	(2.5 mks)		
(b)	Give	the chemical symbols of the following chemical elements:			
	(i)	Sodium			
	(ii)	Helium			
	(iii)	Potassium			
	(iv) (v)	Boron Chlorine			
			(2.5 mks)		
2 (a). T	The el	lements L and Y (not their real symbols) belong to the same ver, they have 1 and 7 electrons in their valence shells respe	period, ctively.		
() Wh	nat is meant by the terms valence and oxidation power of an			
	elei	ment?	(2 mks)		
(i	i) Ene	ergy is applied to each of the elemental atom for the two elemental	ments to		
	lose	a single electron. Which of the elements will require more e its 1 st electron?	nergy to (2 mks)		
(i	ii) De	duce the valence for each of the two elements is. Explain you	ur answers, (4 mks)		
(ir	v) De	duce the probable oxidation state for each of the two eleme.	~- will he		
	in t	their compounds.	(4 mks)		
		om U (not real chemical symbol) can gain or lose an electron e shell. Explain the effect on its:	in its		

	(i) Ato	mic size after gaining an electron	(2 mks)
		mic size after losing an electron	(2 mks)
(c) You ar	e given the chemical symbols of some elements:	
	(i) Be		
	(ii) Ca		
	(iii) Ar		
	Give ti	ne names of elements represented by the above chemical sy	mbols. (1.5 mks)
3. (a)) Define	the following terms:	
		Atom Chemical reaction	(1 mk) (1 mk)
(t	o) An ato	om is composed of two parts each with fundamental particle	e(s).
	(i) Sta	te these two parts of an atom	(1 mk)
	(ii) Fu	ndamental particles namely protons, electrons and neutrons	
	res	side in an atom. State the part of the atom in which each of	
	the	ese particles reside in.	(2 mks)
(0	c) Prese	nt a simplest model of an atom (atomic number, 5) and clea	arly
	label t	the various entities of the atom.	(2 mks)
(d) State fund	the sign and magnitude of the charge of each of the follow amental particles of an atom particles:	ing
	(i)	Proton	(1 mk)
	(ii)	Electron	(1 mk)
	(iii)	Neutron	(1 mk)
(e) What	is meant by the following terms as applied to atoms of elen	nents:
	(i)	Atomic number	

50.00

(ii)	Nucleon number	
(iii)	Mass number	
(iv)	Isotopes	
(v)	Isobars	
(6.11		(5 mks)
	ium-238 is deposited in a desert during nuclear testing. Wil	
unde	rgo radioactive decay more rapidly during summer compar	ed
to w	inter time? Explain your answer.	(2.5 mks)
l. (a) Deter radio	mine if the following nuclei (not real chemical symbols) wo pactive or not. Explain your answers.	uld be
(i) 108Z		
(ii) 115 L		
(iii) 108 84		
		(3 mks)
(b) A radio	active isotope of an element has a half-life of 12 days	
(i) Wha	t is meant by the term half-life as applied in radioactivity?	(2 mks)
(ii) How	many grams of this isotope of an element will remain after	r
	lays if you begin with 40 g? Show clearly your calculations.	
(c) Nulear f	usion and nuclear fission are techniques that have the potential that have the	
(i) Briefl	y give the meaning of the terms nuclear fusion and nuclear	10
fissio	n.	(2 mks)
(ii) Neutr	rons in a nuclear reactor have to be moderated to avoid	
	ntrolled chain reactions. Which materials are used in	
	rating the neutrons in nuclear reactors?	(2 mks)

(iv) Give any two applications of radioisotopes.	(2 mks)				
5. (a) State the effect on mass number and atomic number of a reacti	ng				
isotope of an element when it undergoes each of the following transformations separately:					
(i) A beta particle is emitted (ii) An alpha particle is emitted (iii) A gamma ray is emitted (iv) A positron is emitted	(2 mks) (2 mks) (2 mks) (1.5 mks)				
(b) Some nuclear reactions are represented by the following incomplete					
nuclear equations:					
(i) $g_3^{2/0}$ Bi $\rightarrow {}^4_2$ He + -	(1 mk)				
(ii) $_{g}^{LS}O \rightarrow_{f}^{LS}N + -$					
(iii) $- \rightarrow {}^{4}_{z}He + {}^{22}_{p}Rn$					
(iv) $_{\psi}^{q}$ Be + $_{-}$ $\rightarrow _{6}^{\prime 2}$ C + $_{o}^{\prime}$ n					
(v) ${}_{13}^{27}AI + {}_{1}^{2}H \rightarrow + {}_{2}^{4}He$					
I. The mass number and atomic number of the missing species.	(5 mks)				
II. Name the radiation if the missing species happens to be a					
radiation.	(1 mk)				
(c) Carbon -14 is radioactive and emits some radiation. However, ca stable. What difference is there between the two isotopes in terr					
(i) Chemical reactivity					
(ii) Density					
Explain your answers (4 m	iks)				

(iii) Mention the shortcomings that are to be surmounted for nuclear

(2 mks)

fusion to be enabled on earth today?