

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

MAIN CAMPUS

SCS 404/CCS 417: PRINCIPLES OF FUNCTIONAL PROGRAMMING

Date: 10th December, 2016

Time: 12.00 - 3.00pm

INSTRUCTIONS:

Answer Question ONE and any other TWO
 If writing program code is required, use the JavaScript programming language

ISO 9001:2008 CERTIFIED

Question #1 Compulsory (30 Marks)

```
a) What is a higher order function (HoF)?
                                                                                    [6 Marks]
 b) For each of the HoFs map, filter and fold, state how each is similar to the other two and how
    each is differs from the other two.
                                                                                   [18 Marks]

 c) Using examples, explain the two expression evaluation strategies, sagar evaluation and lays

    estalwation. For each, outline/highlight why it is called so and state, if any, the other terms that
    can be used to refer to it.
                                                                                    [6 Marks]
 Question #2
 a) What is the output of the following code
                                                                                  [10 Marks]
        var counter = 10;
        function countdown(value) (
           if (value > 0) (
               console.log(value);
               return countdown(value - 1);
           else (
               return value:
        11
        countdown (10);
        console.log(counter);
b) What is the output of the following code
                                                                                  [10 Marks]
        var counter - 10;
           while(counter > 0) [
               console.log(counter--);
       console.log(counter);
Question #3
a) A curried function is a higher order function but the reverse is not true. Explain
                                                                                   [4 Marks]
Use the following code to answer the questions that follow
                                                                                   [4 Marks]
       var setVisitor;
       function hujambo(greeting) (
           ver name = 'makali';
           setVisitor = function (newVisitor) { name = newVisitor; }
           return function () ( console.log(greeting + ' ' * name); }
       var greetVisitor = hujambo('good morning');
       greetVisitor();
       setVisitor('makamba');
       greetVisitor();
       greetVisistor = hujambo('good night');
       greetVisitor();
b) In the code, how many functions are there? Identify them
                                                                                  [4 Marks]
c) Are any function in b) corried functions? If so, which ones? Justify your choice.
                                                                                  [4 Marks]
d) How many function calls are there in the code? Identify them?
                                                                                  [4 Marks]
e) Are any of the calls in d) a corrise function call? If so identify and justify your choice.
                                                                                  [4 Marks]
```

Question #4

a) A function definition can be applied. Explain this with a sample code. [5 Marks] Use the following code to answer the questions that follow var setVisitor; function hujambo(greeting) (var name - 'makali'; setVisitor = function (newVisitor) (name = newVisitor;) return function () (console.log(greeting + ' ' + name);) var greetVisitor = hujambo('good morning'); greetVisitor(); setVisitor('makamba'); greetVisitor(); greetVisistor = hujambo('good night'); greetVisitor(); b) In the code, greetVisitor and setVisitor are absures. Explain this. [5 Marks] c) What is the output of the code? [5 Marks] d) What is an anonymous function? Does the code contain any? If so, identify them. [5 Marks]

Question #5

Recursion is primarily used to define infinites sets or extremely large sets. You use recursion to generate new members or prove that an item is a member. An example of an infinite set is the set of odd numbers. A number is odd if it is not evenly divisible by 2.

REQUIRED:

a) Write at least two relations (equations) that define the set of odd numbers. [8 Marks]
b) Write a recursive function that determines if a number is odd. [6 Marks]

 c) Write a function that lists all the odd numbers between its two non-zero positive integer parameters.
 [6 Marks]