

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

FOURTH YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN INDUSTRIAL CHEMISTRY WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

SCS 450: MOLECULAR MODELLING AND DENSITY FUNCTIONAL THEORY

Date: 13th December, 2016

Time: 3.30 - 6.30 pm

INSTRUCTIONS:

Answer question ONE and any other TWO questions.

QUESTION ONE

(a) The table below shows loadings for selected variables on the first tow PCs from a total of 90 parameters describing 85 substituent's

No	Parameter	PC ₁	PC ₂
1	PIAR	-0.72	0.90
2	PIAL	-0.96	0.11
3	FARR	-0.87	0.11
5	FALR	-0.25	0.16
6	FARHL	0.45	0.17
7	K	0.55	0.23
38	SX	0.91	-0.70
43	RE	0.04	0.01
44	1	0.14	0.07
50	HD	0.12	0.07
85	PABA	0.99	0.39

i. Which PC explains much of the variations in the data?

[2marks]

ii. Identify the parameter that is explained in PC,

[2marks]

- Explain the trend that exists between PABA and parameters number 1 to 3 in PC₁ and draw a representative curve for the three
- Identify the outstanding parameter in PC₂ and state the trend that exists between parameter PIAR and 38 draw a representative curve for the relationship [2marks]
 - (b) The following expression relates to the Hammett's equation.

 $log_{10} \frac{K'_x}{K'_0} = \sigma \rho$ Define both $\sigma_x \rho$

i.

[2marks]

- ii. If X= electron withdrawing group (e.g. NO2), what is the overall value of op?
- iii. If X= electron donating group (e.g. CH_s), what is the overall value of σp?

[4marks]

(c) Calculate the substituent hydrophobicity and hydrophylicity Log P for the following aromatic compounds phenol, toluene and p-aminobenzoic Acid [3marks] Refer to the table of π values below.

Hydrophobic	5	Hydrophilic		
Substituent	n>0	Substituent	11<0	
-CH ₃	0.56	-NO ₂	-0.28	
-CF ₃	0.88	-CHO	-0.65	
-C ₆ H ₅	1.96	-CO ₂ H	-0.32	
-C ₆ H ₁₁	2.51	-NH ₂	-1.23	
-C(CH ₃) ₃	1.98	-OH	-0.67	

(d) Name two statistical models used in QSAR and QSPR and cite an example for each.

(e) Briefly describe the following statistical terms Correlation and Dependence?

[2marks]

(f) Give three QSAR/QSPR-Regression Types

[3marks]

(g) List five QSAR/QSPR Post-Qualifications

[5marks]

QUESTION TWO

(a) Correlation Coefficient Matrix below represents the variables considered in the study of a pyrethrin moiety

		Te	TIL	MR	P	V	MV	2)	Jim
Const.	F	Es .	-	1907	-	1	100		1
F	1.000	-			-	-	-		
E _z	-0.214	1.000				-	_		
Tr.	-0.058	0.020	1.000	10000				-	-
MR	0.179	-0.193	-0.247	1.000	100000		-	-	-
P	0.220	-0.309	-0.206	0.949	1.000		-	-	-
V	0.172	-0.375	-0.257	0.908	0.988	1.000		-	-
	-0.049	-0.135	-0.215	0.843	0.905	0.921	1.000		-
MV		-0.146	0.058	0.186	0.215	0.149	-0.102	1.000	-
U ₁	0.954	-0.140	-0.067	0.116	0.168	0.123	-0.171	0.923	1.000

Identify the combination of variables that show significant relationships and describe the trends (use curves to display each of the trends)

(b) Study the tabulated results of the influence of X on properties of the compound whose structure is shown below and answer the questions that follow.

$$Log_{18050} = 1.28 \pi - 0.52 \pi^2 - 0.69 \sigma_m + 1.50$$

 $n = 12$, $r^2 = 0.94$, $s = 0.40$, $F = 19.9$

30	COMPL	MU	OH	CN	NHCH-	NO.	NHC ₂ H ₅	NMe ₂	NHC ₃ H ₇	NHC ₄ H ₂
		-0.16	0.12	0.56	-0.30	0.71	-0.24	-0.15	-0.24	010.4
Th.					-0.47	-0.28	0.08	0.18	0.62	1.16

[2marks] How valid is the equation?

ii. What are the best values for the substituent parameters, it and corresponding on? [2marks]

From the table of substituents, what is the best substituent for X? [2marks]

What is the IC50 for the salicylamide with the substituent you have chosen? state whether it [1mark] is hydrophobic or otherwise

(c) Two researchers studied the insecticidal properties of pyrethrin esters I and II.

The statistics for each curve-fitting are given in the table below.

Curve A statistics	Curve B statistics
n = 6; r = 0.98; s = 0.32; F = 32.39	n = 6; r = 1.00; s = 0.04; F = 1,389.47

			Curve /	A,		
Log P	4	6	8	10	12	14
Log 1/C	10.1	10.4	10.8	11	9.5	7.8
			Curve E	3		
Log P	4	6	8	10	12	14
Log 1/C	11	10.5	10.8	10.9	9.5	7.8

i. Use the values given in the table above to plot the two curves A and B.

[6marks]

From the two curves which one gives the best optimal value for log P and for 1/C?

[2marks]

QUESTION THREE

(a) For equations (I) and (II) give the expressions for K_x and K_{Benzolc} and state the effect of electrons on the equilibrium

Position of equilibrium moves to the right

Position of equilibrium moves to the left

[4marks]

(b) A study of the effect on anticonvulsant activity of substituent's, R, in 1,4-benzodiazepinones (structure shown) gave the following regression equation:

i. Define 11 and 2. In the equation above

[2marks]

- Determine the best values for n that give maximum anticonvulsant activity using the equation above. [2marks]
- iii. If log P is 2.11 for the unsubstituted 1,4-benzodiazepinone, what is the log P for your substituted 1,4-benzodiazepinone? Write down the structure showing the best substituent R that you have established and tabulated as:

Substituents	NH ₂	ОН	CN	NO ₂	Н	F	SO ₂ Ph	OEt	CH₃	CI	CF₃	N(Et) ₂
π	-1.23	-0.67	-0.57	-0.28	0.0	0.14	0.270	0.38	0.56	0.71	0.88	1.18
3	-0.66	-0.37	0.66	0.78	0.0	0.06	0.70	-0.24	-0.17	0.23	0.54	-0.90

[2marks]

(c) List and explain the factors used to evaluate the validity of QSAR equations in multiple linear regression (MLR) analysis [10marks]

QUESTION FOUR

(a) The hydrophilic or hydrophobic properties of molecules, for which the partition coefficient, P, of a molecule is used. P is defined by

$$\mathbf{P} = \frac{[\text{drug}]_{\text{extensit}}}{[\text{drug}]_{\text{max}}}$$

Derive the logarithmic relationship

[4marks]

(b) Study the data presented in the table below generated from the reaction shown to answer questions that follow

R	H	CH ₃	OCH ₃	F	Cl	NO ₂
ortho	6.27	12.3	8.06	54.1	11.4	671
neta	6.27	5.35	8.17	13.6	14.8	32.1
hara	6.27	4.24	3.38	7.22	10.5	37.0

i. What is the effect of R on the acidity of the acids?

[4marks]

Derive the expression for quantifying electronic properties in terms of K_a

[4marks]

(c) Give advantages and disadvantages of the Free-Wilson Approach

[4marks]

(d) Define the terms logP and a, and briefly describe how they are obtained.

[4marks]