

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2015/2016

FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF EDUCATION WITH INFORMATION TECHNOLOGY

CITY CAMPUS-SCHOOL BASED

SMA 103: LINEAR ALGEBRA I

Date: 12th February, 2016

Time: 2.00 - 4.00 pm

Answer question ONE and any other TWO questions.

Question 1. [Compulsory]

[30 Marks]

- (a) Explain the meaning of the following as used in linear algebra
 - (i) a subspace of a vector space.
 - (ii) a linearly independent set.
 - (iii) a basis for a vector space

[6 Marks]

(b) Solve the following system of linear equations using row reduction process.

$$-x_1 - x_2 + 2x_3 = 3$$

$$2x_1 + x_2 - 2x_3 = 5$$

$$x_1 + x_2 - x_3 = 1$$

[5 Marks]

(c) Given the vectors $\mathbf{u} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{v} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Find the acute angle between \mathbf{u} and \mathbf{v} in degrees correct to one decimal place.

[5 Marks]

(d) Given the matrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, find the

- (i) reduced row echelon equivalence of A.
- (ii) basis for the column space of A.
- (iii) rank of A.

[6 Marks]

- (e) If the points P=(1, 1, 3), Q = (-3, -1, 4) and R = (-1, 3, 7) are coplanar,
 - (i) find the symmetric equation of the line passing through P and Q.

- (ii) determine the equation of the plane containing the three points.
- (iii) compute to 2 decimal places, the area of the parallelogram whose consecutive vertices are P, Q and R. [8 Marks]

QUESTION 2.

(a) Let every vectors $\mathbf{u} = [x, y, z]$ in the subset V of \mathbb{R}^3 satisfy the following system of linear equations. 2x + y + 3z = 0

$$x + y + 2z = 0$$

$$y + z = 0$$

- (i) Show that the vectors in V are of the form $\{v = (-t, -t, t): t \in \mathbb{R}\}$.
- (ii) Show that V forms a vector subspace of \mathbb{R}^3 under the usual vector addition and scalar multiplication on the space \mathbb{R}^3 .
- (iii) Determine a basis and dimension of V.
- (iv) Which of the following vectors belong to V?

$$u_1 = [1,2,3], u_2 = [0,0,0], u_3 = [2,2,-2]$$
 [13 Marks]

(b) Consider the system of linear equations;

$$x_1 + 2x_2 + x_3 = c_1$$

$$2x_1 + x_2 - x_3 = c_2$$

$$-4x_1 + x_2 + 5x_3 = c_3$$

(i) Given that c_1 , c_2 , c_3 are non zero scalars, find the condition they must

satisfy if the system is consistent.

(ii)Determine the basis for the solution space.

[7 Marks]

Question3.

- (a) Let ${\bf u}$ and ${\bf v}$ be two vectors in \mathbb{R}^3 . Show that $\|{\bf u}+{\bf v}\| \leq \|{\bf u}\| + \|{\bf v}\|$ [6 Marks]
- (b) Consider the vectors $\mathbf{u} = -3i + j + 8k$, $\mathbf{v} = -2i 3j + 5k$ and $\mathbf{w} = 2i + 14j 4k$ in \mathbb{R}^3
 - (i) Show that the vectors u, v and w are coplanar.
 - (ii) Determine the equation of the plane containing u, v and w.[8 Marks]
- (c) The planes 2x + 3y + 2z = 4 and x + 2y + 3z = 2 intersect along some line L.
 - (i) Find the parametric equation of L.
 - (ii) Determine the directional vector of L and hence give the vector equation of L.

 [6 marks]

Question 4.

- (a) (i) Let A be an m × n matrix and consider the mapping T: Rⁿ → R^m defined by T(x) = Ax for every n-vector x. Show that T is a linear transformation.
 - (ii) If the range of T is {w: w = T(v) for some v ∈ Rⁿ.}. Show that range of T is a subspace of R^m.
 [12 Marks]

(b) A linear map T from the vector space \mathbb{R}^3 into itself is defined by

$$T([x, y, z]) = [x + y, y - z, x + z]$$

- (i) Find the matrix M_T which represents T with respect to the standard ordered basis for ℝ³.
- (ii) Find the Kernel of T
- (iii) Determine the vectors which span the range of T. [8 Marks]

Question 5

- (a) Let U and V be subspaces of R3 over a real field F.
 - (i) Show that U∩V is a vector subspace of R³.
 - (ii) Given that $U = \{[x, y, z] : x y + z = 0\}$ and

 $V = \{[x, y, z]: 2x + y - z = 0\}$, find the vector which spans $U \cap V$

[12 Marks]

- (b) Let W be the subspace of \mathbb{R}^4 spanned by the set $V = \{[1,2,1,1], [0,1,-1,1], [1,0,2,3], [1,-1,2,6]\}.$
 - (i) Show that V is a linearly dependent set.
 - (ii) Obtain a subset of V which forms a basis for W.
 - (iii) Verify that the vector v = [1,5,-1,0] is a vector in W.

[8 MARKS]