

MURANG'A UNIVERSITY COLLEGE

A constituent college of Jomo Kenyatta University of Agriculture and Technology

University Examination 2015/2016

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2330: THEORY OF ESTIMATION

DATE: DECEMBER 2015

TIME:

2 HOURS

[2marks]

[2marks]

[4marks]

Instructions: Attempt question <u>One</u> and <u>Two</u> other questions

a) Define the following terms as used in theory of estimation

- (i) A parameter and a statistic
- (ii) Sufficient statistic
- b) Let $x_1, x_2, ..., x_n$ be a random sample from Poisson distribution with parameter λ . Obtain by the method of moments the estimator for λ [5marks]
- c) Let $x_1 x_2 \dots x_n$ be a random sample from a Bernoulli population with parameter θ .

$$f(x) = \begin{cases} \theta^{x} (1-\theta)^{1-x}, & x = 0,1; 0 < \theta < 1\\ 0 & otherwise \end{cases}$$

Find the maximum likelihood estimator of θ .

- d) Let $x_1, x_2, ..., x_n$ be a random sample of size n from a normal distribution with mean μ and variance σ^2 . Show that the statistic defined by $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$ is an unbiased estimator of σ^2 where s^2 is the sampling mean whereas $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$ is not an unbiased estimator of σ^2 .[7marks]
- e) Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, 1)$ with mean μ and variance 1. Show that $T = \sum_{i=1}^{n} x_i$ is a sufficient statistic for μ using the Neyman Fisher factorisation criterion. [6marks]
- f) Let $x_1, x_2, ..., x_n$ be a random sample from Poisson distribution with parameter $\lambda > 0$. Find the uniformly minimum variance unbiased estimator of λ . [4marks]

QUESTION TWO (20 MARKS)

- a) Let X be a binomial random variable with parameter n (known) and p (unknown). Given a random sample of n observations of X, compute using the methods of moments the estimator for p. What would be the estimators when both parameters are unknown?
- b) Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, \sigma^2)$ where the mean μ and variance σ^2 are unknown parameters. Find the maximum likelihood estimators for:
 - (i) $\mu \ when \ \sigma^2$ is unknown [5marks]
 - (ii) $\sigma^2 when \mu$ is unknown [5marks]

QUESTION THREE (20 MARKS)

a) Let x_1, x_2, \ldots, x_n be a random sample from a probability distribution given by;

$$f(x,\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x), & 0 < x < \theta, \\ 0, & otherwise \end{cases}$$
Obtain the estimate of θ by the method of moments [5marks]

Obtain the estimate of θ by the method of moments b) Let x_1, x_2, \dots, x_n be a random sample from probability distribution given by;

$$f(x, \alpha) = \begin{cases} \alpha e^{-\alpha x}, & x \ge 0\\ 0, & otherwise \end{cases}$$

Obtain the maximum likelihood estimator for parameter α [5marks]

c) Let x_1, x_2, \ldots, x_n denote a random sample from a Beta distribution

 $f(x, \alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma\alpha\Gamma\beta} x^{\alpha-1} (1-x)^{\beta-1}$ with parameter $\alpha > 0, \beta > 0$ unknown. Show that the family of Beta distribution with parameter α and β unknown belongs to a two parameter exponential family, hence determine jointly sufficient statistic for α and β [5marks]

d) Let x_1, x_2, x_3 be a random sample from a size 3 from a distribution with mean θ and variance 100. Let $\hat{\theta} = \frac{1}{2}x_1 + \frac{1}{3}x_2 + \frac{1}{6}x_3$ be an estimator of θ . With respect to the squared-error loss function, find the risk of using $\hat{\theta}$ to estimate θ . [5marks]

QUESTION FOUR (20 MARKS)

- a) State *without* proving the Cramer-Rao lower bound theorem including the regularity conditions assumed in proving it. [4marks]
- b) Let $x_1, x_2, ..., x_n$ be a random sample from a Bernoulli distribution with parameter θ . If $\delta(\underline{x})$ is an unbiased estimator of θ . Find the lower bound of the variance of the unbiased estimator of θ , hence find an UMVUE of θ . [6marks]
- c) Let $x_1, x_2, ..., x_n$ be a random sample from a *pdf* $f(x, \theta) = \theta^x (1 \theta)$, x = 0, 1, 2 Show that the lowest possible variance for an unbiased estimator of $\frac{\theta}{1-\theta}$ is $\frac{\theta}{n(1-\theta)^2}$ [10marks]

QUESTION FIVE (20 MARKS)

- a) Define the following terms as used in Bayesian statistics
 - (i)Prior distribution[3marks](ii)Posterior distribution[3marks]
- **b)** Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, 1)$. Let the prior distribution of μ be N(0,1), that is $\lambda(\mu) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\mu^2}$. Obtain the Bayes estimator with respect to the squared error loss function

[14marks]