MURANG'A UNIVERSITY COLLEGE

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2303 : GROUP THEORY

DATE: 9 TH DECEMBER 2015

TIME 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE (COMPULSORY) ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

8	a) Let $G = S_3$ and $H = \langle (12) \rangle$. Find H(13) and (13)H	(3 Marks)	
ł	b) Let G be a group and $\emptyset : G \to H$ be a group homomorphism. Show that		
	i. If $a \in G$, then $\emptyset(a^{-1}) = [\emptyset(a)]^{-1}$	(3 Marks)	
	ii. \emptyset is one to one if ker $\emptyset = \{e\}$	(4 Marks)	
C	c) Define the term odd and even permutation.	(3 Marks)	
C	d) Express (1234) as a product of transpositions.	(3 Marks)	
e	e) Let G = { $\pm 1, \pm i$ }. Draw the Cayley table for (G,×) and find the order of all elements.	(4 Marks)	
f	F) Show that the centre of a group is a normal subgroup	(5 Marks)	
Ę	g) Prove that in a group, both the identity and inverses are unique.	(5 Marks)	

QUESTION TWO (20 MARKS)

a)

i.	Define the term subgroup.	(2 Marks)
ii.	Show whether or not $\{1, 2, 4\}$ is a subgroup of (\mathbb{Z}_5^*, \times)	(2 Marks)

iii.	Prove that the union of two or more subgroups of a group G is not necessarily a subgroup of G.	(5 Marks)
i.	Define the term centralizer of an element in a group.	(2 Marks)
ii.	Let $G = S_3$ and $a = (12)$. Show that $c(a) = \{e, a\}$	(4 Marks)

iii. Let $x \in c(a)$. Show that x^{-1} and x^k are c(a) (5 Marks)

QUESTION THREE (20 MARKS)

b)

a)			
	i.	Define the term "order of an element" in a group.	(3 Marks)
	ii.	Let G be a group and suppose an element $a \in G$ is of order m. Show that	
		$a^s = e$ if and only if $m s$.	(6 Marks)
b)			
	i.	Define the term cyclic group. Give two examples of cyclic group and state why	
		they are cyclic.	(5 Marks)
	ii.	Let G = { $a \in \mathbb{Z}_{10}$ gcd (a,10) = 1}. Find all inverses of the elements in G and	
		hence find any generator of G, also show whether 3 is a generator of G.	(6 Marks)

QUESTION FOUR (20 MARKS)

a)	Define	e the group D ₄	(2 Marks)
b)	b) Let $\alpha, \beta \in S_5$ defined by $\alpha = \begin{pmatrix} 12345\\25314 \end{pmatrix}, \beta = \begin{pmatrix} 12345\\54123 \end{pmatrix}$ and $\gamma = \begin{pmatrix} 12345\\53241 \end{pmatrix}$		
		Find $\alpha_o \beta_o \gamma$ and $\alpha_o \beta_o \alpha_o \gamma$	(5 Marks)
c)	Let G	be a group and $\emptyset : G \to H$ be a group homomorphism with image $\emptyset(G)$. Show that	
	i.	If G is cyclic then $\emptyset(G)$ is cyclic.	(4 Marks)
	ii.	If G is abelian then $\emptyset(G)$ is abelian.	(4 Marks)
d)			
	i.	Define the term transposition.	(2 Marks)
	ii.	Express (1325)(1246)(36) as a product of disjoint cycles.	(3 Marks)

QUESTION FIVE (20 MARKS)

- a) Prove that every cyclic group is abelian. Determine whether the converse holds [4 marks]
- b) Let $K = \{p, 2, q\}$ and let * be a binary operation on K. Suppose the Cayley table for $\langle K, * \rangle$ is as shown below. Determine (giving reasons) whether $\langle K, * \rangle$ is a group [4 marks]

*	р	2	Q
Р	2	q	Р
2	q	р	2
q	р	2	Q

- c) Let S={1, -1, i, -i}. Show that S is a group under usual multiplication. Hence show that. $\langle S, \times \rangle = \langle i \rangle = \langle -i \rangle$ [6 marks]
- d) Define the following terms and give an example in each
 - i.Group orbit of an element(2 Marks)ii.Stabilizer of an element(2 Marks)iii.Centre of a group(1 Marks)iv.Nilpotent element(1 Marks)