MURANG’A UNIVERSITY COLLEGE

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF
BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE
SMA 2303 : GROUP THEORY
DATE: 9 ™M DECEMBER 2015 TIME 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE (COMPULSORY) ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKYS)

a) LetG=5,and H=<(12)>. Find H(13) and (13)H (3 Marks)

b) LetGbeagroupand @ : ¢ — H be a group homomorphism. Show that

i. IfaeG, then®(a™) = [0(a)]™? (3 Marks)
ii. @isonetooneifker@={e} (4 Marks)
c) Define the term odd and even permutation. (3 Marks)
d) Express (1234) as a product of transpositions. (3 Marks)

e) Let G ={+1, +i}. Draw the Cayley table for (G,x) and find the order of all elements. (4 Marks)
f) Show that the centre of a group is a normal subgroup (5 Marks)

g) Prove that in a group, both the identity and inverses are unique. (5 Marks)

QUESTION TWO (20 MARKS)

a)
I.  Define the term subgroup. (2 Marks)
ii.  Show whether or not {1, 2, 4} is a subgroup of (Z_*,x) (2 Marks)



b)

Prove that the union of two or more subgroups of a group G is not necessarily a
subgroup of G.

Define the term centralizer of an element in a group.
Let G = 5;and a = (12). Show that c (a) = {e, a}
Let x € c(a). Show that x~* and ¥ are c(a)

QUESTION THREE (20 MARKYS)

a)

b)

Define the term “order of an element” in a group.
Let G be a group and suppose an element a £ Gis of order m. Show that
a® = e ifand only if m|s.

Define the term cyclic group. Give two examples of cyclic group and state why
they are cyclic.

Let G = {a € Z,, | gcd (a,10) = 1}. Find all inverses of the elements in G and
hence find any generator of G, also show whether 3 is a generator of G.

QUESTION FOUR (20 MARKYS)

a) Define the group Da

b) Leta, € S, defined by o= (

c) LetGbeagroupand @: ¢ — H be a group homomorphism with image@(&). Show that
I.

d)

51 (S we - (225D

Find @, 8,y and a S a, ¥

If G is cyclic then @(G) is cyclic.
If G is abelian then @(&) is abelian.

Define the term transposition.
Express (1325)(1246)(36) as a product of disjoint cycles.
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QUESTION FIVE (20 MARKYS)

a) Prove that every cyclic group is abelian. Determine whether the converse holds [4 marks]

b) Let K = {p, 2, g} and let = be a binary operation on k. Suppose the Cayley table for < K,== is as

shown below. Determine (giving reasons) whether <= K == is a group [4 marks]
p 2 Q
P 2 q P
2 q p 2
q p 2 Q

c) LetS={1,—1,i,—i}. Show that S is a group under usual multiplication. Hence show that.
< S K=< = —i = [6 marks]

d) Define the following terms and give an example in each

i.  Group orbit of an element (2 Marks)
ii.  Stabilizer of an element (2 Marks)
iii.  Centre of a group (1 Marks)

iv.  Nilpotent element (1 Marks)



