MURANG'A UNIVERSITY COLLEGE
 THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE SMA 2303 : GROUP THEORY

DATE: $9{ }^{\text {TH }}$ DECEMBER 2015
TIME 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE (COMPULSORY) ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Let $\mathrm{G}=S_{3}$ and $\mathrm{H}=\langle(12)>$. Find $\mathrm{H}(13)$ and (13) H
b) Let G be a group and $\emptyset: G \rightarrow H$ be a group homomorphism. Show that
i. If $a \in G$, then $\emptyset\left(a^{-1}\right)=[\emptyset(a)]^{-1}$
ii. \emptyset is one to one if $\operatorname{ker} \emptyset=\{\mathrm{e}\}$
c) Define the term odd and even permutation.
d) Express (1234) as a product of transpositions.
e) Let $\mathrm{G}=\{ \pm 1, \pm i\}$. Draw the Cayley table for (G, \times) and find the order of all elements.
f) Show that the centre of a group is a normal subgroup
g) Prove that in a group, both the identity and inverses are unique.

QUESTION TWO (20 MARKS)

a)
i. Define the term subgroup.
(2 Marks)
ii. Show whether or not $\{1,2,4\}$ is a subgroup of $\left(\mathbb{Z}_{5}{ }^{*}, X\right)$
iii. Prove that the union of two or more subgroups of a group G is not necessarily a subgroup of G.
b)
i. Define the term centralizer of an element in a group.
(2 Marks)
ii. Let $\mathrm{G}=S_{3}$ and $\mathrm{a}=(12)$. Show that $\mathrm{c}(\mathrm{a})=\{\mathrm{e}, \mathrm{a}\}$
iii. Let $x \in c(a)$. Show that x^{-1} and x^{k} are $c(a)$

QUESTION THREE (20 MARKS)

a)
i. Define the term "order of an element" in a group.
(3 Marks)
ii. Let G be a group and suppose an element $a \in G$ is of order m. Show that $a^{s}=e$ if and only if $m \mid s$.
b)
i. Define the term cyclic group. Give two examples of cyclic group and state why they are cyclic.
ii. Let $\mathrm{G}=\left\{a \in \mathbb{Z}_{10} \mid \operatorname{gcd}(\mathrm{a}, 10)=1\right\}$. Find all inverses of the elements in G and hence find any generator of G , also show whether 3 is a generator of G .

QUESTION FOUR (20 MARKS)

a) Define the group D_{4}
b) Let $\alpha, \beta \in S_{5}$ defined by $\alpha=\binom{12345}{25314}, \beta=\binom{12345}{54123}$ and $\gamma=\binom{12345}{53241}$

Find $\alpha_{o} \beta_{o} \gamma$ and $\alpha_{o} \beta_{o} \alpha_{o} \gamma$
c) Let G be a group and $\emptyset: G \rightarrow H$ be a group homomorphism with image $\emptyset(G)$. Show that
i. If G is cyclic then $\emptyset(G)$ is cyclic.
ii. If G is abelian then $\emptyset(G)$ is abelian.
d)
i. Define the term transposition.
ii. Express $(1325)(1246)(36)$ as a product of disjoint cycles.

QUESTION FIVE (20 MARKS)

a) Prove that every cyclic group is abelian. Determine whether the converse holds [4 marks]
b) Let $K=\{p, 2, q\}$ and let * be a binary operation on K. Suppose the Cayley table for $\langle K, *\rangle$ is as shown below. Determine (giving reasons) whether $\left\langle K_{,} *\right\rangle$ is a group [4 marks]

$*$	p	2	Q
P	2	q	P
2	q	p	2
q	p	2	Q

c) Let $\mathrm{S}=\{1,-1, i,-i\}$. Show that S is a group under usual multiplication. Hence show that.
$\langle S, \times\rangle=\langle i\rangle=\langle-i\rangle$
d) Define the following terms and give an example in each
i. Group orbit of an element
ii. Stabilizer of an element
iii. Centre of a group
(1 Marks)
iv. Nilpotent element

