

MURANGA UNIVERSITY SOLLEGE

THIRD YEAR SEMESTER I EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2301 REAL ANALYSIS I

DATE: 16TH DECEMBER 2015

TIME 2 HOURS

Instructions: Answer Question One (Compulsory) and Any Other Two Questions

QUESTION ONE (30 MARKS)

a)	Define	the following terms:			
	i.	Set	(1 Mark)		
	ii.	Countably infinite set	(2 Marks)		
b)	Define the term Limit Point. Hence show whether the set of positive integers has limit points				
			(4 Marks)		
c)	Show t	hat the sequence $(X_n) = 1 + (-1)^n (\frac{1}{n^2}), n \in \mathbb{N}$ converges to 1 in \mathbb{R}	(4 Marks)		
d)	Define	the following terms:			
	i.	Monotonic increasing sequences	(2 Marks)		
	ii.	Cauchy Sequence	(2 Marks)		
e)	Let A =	= \mathbb{R} and d: $A \to A$ be defined as $d(x, y) = x - y \forall x, y \in A$. Show if d is a metric	(4 Marks)		
f)	Let (X, d) be a metric space. Prove that any subset A of X which has a finite number of elements				
	cannot	have a limit point	(3 Marks)		
g)	Every	nfinite subset F of a compact set K has a limit point in K. Prove.	(4 Marks)		
h)	Two f	unctions f and g are defined as follows:			
$f: \mathbb{N} \longrightarrow \mathbb{N}, f(n) = 2n$					
$(2^{n-1}$ if <i>n</i> is odd					

$$\begin{split} &f: \mathbb{N} \longrightarrow \mathbb{N}, \, f(n) = 2n \\ &g: \mathbb{N} \longrightarrow \mathbb{N}, \, g(n) = \begin{cases} 2^{n-1}, \, if \quad n \quad is \, oddd \\ 3^{n-2}, \, if \quad n \quad is \, even \end{cases} \end{split}$$

Determine which of the functions is one to one. Justify your answer. (4 marks)

QUESTION TWO (20 MARKS)

a)Define the term convergent sequence. Hence show if the sequence

$$(X_n) = \begin{cases} 1, & \text{if } n & \text{is even} \\ 0, & \text{if } n & \text{is odd} \end{cases} \quad \text{converges} \tag{4 Marks}$$

- b) Let (X_n) be a sequence of real numbers.
 - i. Prove that (X_n) converges if and only if $\overline{lim} X_n = \underline{lim} X_n$ and that this number is real

(5 Marks)

ii. Let
$$(X_n) = \{1 + \frac{1}{2n}\}$$
, find the limit point of (X_n) (1 Marks)

iii. Let
$$(X_n) = (\frac{1}{n})$$
. Find the $\overline{lim} X_n$ and $\underline{lim} X_n$ (4 Marks)

c)

() The sequence is equence is eq
--

ii. Give a counter example of a Cauchy sequence which does not converge (2 Marks)

QUESTION THREE (20 MARKS)

a)

b)

c)

i.	Define the term metric space. Give an example of a metric space.	(3 Marks)		
ii.	Let (X, d) be a metric space. Show that the whole space X and the empty set \emptyset and	the whole space X and the empty set \emptyset are open		
		(5 Marks)		
i.	Define the term complement of a set A.	(1 Marks)		
ii.	Let (X, d) be a metric space and $A \subset X$. Show that A is closed if A^c is open	(6 Marks)		
Use a counter example or otherwise to show that an infinite intersection of open sets need not				
be	e open.	(5 Marks)		

QUESTION FOUR (20 MARKS)

a)	
i. Define the term bounded set.	(2 Marks)
ii. Construct a bounded set of real numbers with exactly 3 limit points	(5 Marks)
b)	
i. Define the term compact set	(2 Marks)
ii. Show that $(0, 1)$ is not a compact subset on \mathbb{R}	(5 Marks)
c)Let E be a closed and bounded subset of \mathbb{R} . Prove that both sup E and Inf E below	g to E
	(6 Marks)
QUESTION FIVE (20 MARKS)	
a) Given reasons, state whether each of the following statements is true or fals	se.
i) The isolated point of \mathbb{Z} are the integers themselves.	(2marks)
ii) The boundary points of \mathbb{Z} are all integers.	(2marks)
b)	
i. Find where possible the supremum and infimum of each of the sets	below.
	(4marks)
$A = \left\{\frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \frac{5}{6}, -\frac{6}{7}, \dots\right\} \text{ And } B = \left\{0, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{5}{3}, \frac{6}{3}, \dots\right\}$	
ii. Prove that if a set has a supremum, then then supremum is unique.	(5 marks)
c) Consider the set $A = (1,3) \cup \{5\}$. Determine	
i) The interior of A.	(3marks)
ii) The closure of A.	(4marks)