

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)

DEPARTMENT:
LEVEL:
CLASS:
TERM/SEMESTER:
ACADEMIC YEAR:
UNIT:
UNIT CODE:
TIME:
DATE:

ELECTRICAL ENGINEERING

DIPLOMA
MRUC/ME/P/14DS
I1
2014/2015
ELECTRICAL SCIENCE II
SEM 1202

2 HOURS

21 ${ }^{\text {ST }}$ AUGUST 2015

Instructions to candidates

This paper contains four (4) questions
Question 1 is compulsory
Answer any other 2 questions
You should have the following for this examination;

- Drawing instruments
- Scientific calculator

Mobile Phones Not Allowed In Exam Room

1. (a) Define the following terms:
i. Unidirectional waveform
ii. Alternating waveform
iii. Period, T.
iv. Frequency
v. Amplitude
vi. Instantaneous value
vii. Peak-to-peak value
(b) An alternating current completes 5 cycles in 8 ms . Determine its frequency? (3marks)
(c) An alternating voltage is given by $\mathrm{V}=75 \sin (200 \pi \mathrm{t}-0.25)$ volts. Find:
(i) The periodic time, T (ii) The peak-to-peak value (iii) The r.m.s value
(iv) The phase angle in degrees and minutes relative to $75 \sin 200 \pi$ t.
(10marks)
(d) The current in a.c circuit at any time t seconds is given by $\mathrm{i}=120 \sin (100 \pi \mathrm{t}+0.36)$ amperes Find:
The peak value, the periodic time, the frequency and phase angle relative to $120 \sin 100 \pi \mathrm{t}$.
2. (a) Determine the capacitive reactance of a capacitor of $10 \mu \mathrm{~F}$ when connected to a Circuit of frequency 20 kHz .
(b) A coil of inductance 159.2 mH and resistance 20Ω is connected in series with a 60Ω resistor to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine:
i. The impedance of the circuit
ii. The current in the circuit
iii. The circuit phase current
iv. The potential difference across the 60Ω resistor
(12marks)
(c)Describe the following moving-iron instrument with aid of labelled diagrams.
(i) Attraction type
(ii) Repulsion
(6marks)
3. (a) Define the term Q - factor.
(2marks)
(b) A capacitor C is connected in series with a 40Ω resistor across a supply voltage of frequency 60 Hz . A current of 3 A flows and the circuit impedance is 50Ω. Calculate:
(i) The value of the capacitance, C .
(ii) The supply voltage
(iii) The phase angle between the supply voltage and current
(iv) The potential difference across the resistor
(v) The potential difference across the capacitor
(vi) Draw the phasor diagram
4. (a). A 5 KVA single phase transformer has turns ratio of 10:1 and is fed from a 2.5 KV supply. Neglecting losses, determine ;
(i) The full load secondary current
(ii) Minimum load c urrent which can be connected across the secondary winding to give full load KVA
(iii) The primary current at full load KVA.
(12marks)
(b) Describe the construction and principle of operation of a transformer with an aid of diagram.
