

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)

DEPARTMENT:	ELECTRICAL ENGINEERING
LEVEL:	DIPLOMA
CLASS:	MRUC/ME/P/14DS
TERM/SEMESTER:	I1
ACADEMIC YEAR:	2014/2015
UNIT:	ELECTRICAL SCIENCE II
UNIT CODE:	SEM 1202
TIME:	2 HOURS
DATE:	21 ST AUGUST 2015

Instructions to candidates

This paper contains four (4) questions

Question 1 is compulsory

Answer any other 2 questions

You should have the following for this examination;

- Drawing instruments
- Scientific calculator

Mobile Phones Not Allowed In Exam Room

- 1. (a) Define the following terms:
 - i. Unidirectional waveform
 - ii. Alternating waveform
 - iii. Period, T.
 - iv. Frequency
 - Amplitude v.
 - vi. Instantaneous value
 - vii. Peak-to-peak value
 - (b) An alternating current completes 5 cycles in 8ms. Determine its frequency? (3marks)
 - (c) An alternating voltage is given by $V = 75 \sin (200\pi t 0.25)$ volts. Find:
 - (i) The periodic time, T (ii) The peak-to-peak value (iii) The r.m.s value
 - (iv) The phase angle in degrees and minutes relative to $75\sin 200\pi t$. (10marks)
 - (d) The current in a.c circuit at any time t seconds is given by $i = 120 \sin (100\pi t + 0.36)$ amperes Find:

The peak value, the periodic time, the frequency and phase angle relative to $120\sin 100\pi t$.

(10marks)

(7marks)

- 2. (a) Determine the capacitive reactance of a capacitor of 10μ F when connected to a Circuit of frequency 20 kHz. (2marks)
 - (b) A coil of inductance 159.2mH and resistance 20Ω is connected in series with a 60Ω resistor to a 240V, 50Hz supply. Determine:
 - The impedance of the circuit i.
 - ii. The current in the circuit
 - The circuit phase current iii.
 - iv. The potential difference across the 60Ω resistor

(c)Describe the following moving-iron instrument with aid of labelled diagrams.

- Attraction type (i)
- (ii) Repulsion
- 3. (a) Define the term Q factor.
 - (b) A capacitor C is connected in series with a 40 Ω resistor across a supply voltage of frequency 60Hz. A current of 3 A flows and the circuit impedance is 50Ω . Calculate:
 - (i) The value of the capacitance, C.
 - (ii) The supply voltage
 - (iii) The phase angle between the supply voltage and current
 - (iv) The potential difference across the resistor
 - (v) The potential difference across the capacitor
 - (vi) Draw the phasor diagram

(18 marks)

(6marks)

(12marks)

(2marks)

- **4.** (a). A 5KVA single phase transformer has turns ratio of10:1 and is fed from a 2.5KV supply. Neglecting losses, determine ;
 - (i) The full load secondary current
 - (ii) Minimum load c urrent which can be connected across the secondary winding to give full load KVA
 - (iii) The primary current at full load KVA.

(12marks)

(b) Describe the construction and principle of operation of a transformer with an aid of diagram. (8marks)