MURANG'A UNIVERSITY COLLEGE

(A constitute college of Jomo Kenyatta university of Agriculture & Technology)

SCHOOL OF ENGINEERING AND TECHNOLOGY

MECHANICAL ENGINEERING

CODE: SEM 1110

YEAR II SEMESTER I

COURSE: MECHANICAL ENGINEERING SCIENCE

CLASS: ME /14DS

DATE: 27TH APRIL 2015

TIME: 2HRS

INSTRUCTIONS

QUESTION ONE IS COMPULSORY AND ATTEMPT ANY OTHER TWO QUESTIONS

QUESTION ONE

a. Define

i. stress

ii. strain

- [4mks]
- b. A rubber pad for a machinemounting is to carry a load of 20KN and to compress 12mm under this load. If the stress in the rubber is not to exceed $350 \text{KN}/m^2$ determine the diameter and thickness of a pad of circular cross-section

Take E for rubber as 1MN $/m^2$

- c. The following results were obtained during a tensile test to destruction on a specimen on low carbon steel
 - Diameter of specimen=11.28mm
 - ➢ Gauge length=50mm
 - Load at yield point=26KN
 - Maximum load on specimen=47.5KN
 - ➢ Final length at fracture=67mm
 - Diameter of specimen at fracture=8.2mm

[6mks]

From these results determine the yield stress, tensile strength, percentage elongation and percentage reduction in area [10mks]

- d. A force of 540N acting parallel to a plane inclined at 20° to the horizontal is required to just move a body of mass 61.3kg up the plane. Find
 - i. the coefficient of friction between the surfaces
 - ii. The force parallel to the plane required to drag the body down the plane at a steady speed. [10mks]

QUESTION TWO

a. state Hooke's law [2mks]
b. A brake rod 1.25m long is made from steel which has a modulus of elasticity of 200Gpa.using a factor of safety of 6 calculate the minimum diameter of rod required to transmit a pull of 4000N,the tensile strength of the material being 480Mpa. Determine also the extension of the rod when subjected to this pull

[10mks]

[5mks]

- c. A handbrake has a leverage of 8:1. the handbrake cable has an initial length of 2m and a cross-sectional area of $20 {\rm m} m^2$ $~{\rm determine}$
- i. The stress in the cable when the driver applies a force of 100N to the handbrake
- ii. The strain in the cable when it is extended by 0.4mm
- iii. The modulus of elasticity for the material of the brake [8mks]

QUESTION THREE

3(a) state three laws of friction	[6mks]
3b) A single- plate clutch of 0.15m effective diameter is lined w	rith material of coefficient of

Calculate

i. The torque transmitted	
ii. The power transmitted at 300rev/min	[7mks]
3c) A load of 10 tonnes is pulled along a horizontal track by a force of 30° to and track. If the coefficient of sliding friction is 0.2 find the friction force	d above the [7mks]
QUESTION FOUR	
4. a)Define the terms statics and dynamics	[2mks]
4.b) A vehicle is accelerated uniformly at 1.5m/s^2 from a speed of 27km/h . calculate	

- i. Time required for it to attain a speed of 81km/h
- ii. The distance travelled in this time

friction 0.35.if the total spring force is 25KN

4c)A cyclist accelerates with a constant acceleration of $0.2m/s^2$ from rest for a period of 7s and continues at this speed for 30s before coming to rest in 5s.The deceleration is constant. Sketch the v-t diagram and determine the taken to travel the first 15m and the total distance travelled. [7mks]

4.d) Find the deceleration of a car which is brought to rest in 60m from a speed of 45km/h. what is the time taken. [6mks]