

EMBU UNIVERSITY COLLEGE (A CONSTITUENT COLLEGE OF THE UNIVERSITY OF NAIROBI)

TRIMESTER EXAMINATIONS 2013/2014 SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SMA 205: INTRODUCTION TO ALGEBRA

DATE: AUGUST 11, 2014

TIME: 8.30 - 10.30AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

a) Let the binary operation * be defined on $S = \{a, b, c, d, e\}$ by means of the table below

*	a	b	С	d	e
a	a	b	С	b	d
b	b	С	a	e	С
С	С	a	b	b	a
d	ь	е	ь	е	d
е	d	b	a	d	С

Compute:

i) (b*d)*c and b*(d*c) from the table. Can you say on the basis of this computation whether * is associative (2 marks)

- ii) Is *commutative? Why? (1 mark)
- b) i) Determine whether the definition of * given below does give a binary operation on the given set
 - On \mathbb{Z}^+ , define * by a * b = c where c is at least 5 more than a + b. (2 marks)
 - ii) (I) Define an identity element *e* for a given at *S*

(II) Show that 1 is the identity element with respect to the binary operation * given by $x*y=x+y-1 \ \forall \ x,y\in\mathbb{Z}$ (2 marks)

c) i) The table in the figure below defines a binary operation * on the set $S = \{A, B, C, D\}$

*	A	В	С	D
A	В	С	A	В
В	C	D	В	A
C	A	В	С	D
D	A	В	D	, D

From the table, determine whether S is a group with respect to * (4 marks)

ii) Distinguish a field and a ring as sets of algebraic structures (2 marks)

d) i) State the law of trichotomy for integers

(2 marks)

(1 mark)

- ii) Define the order relation a < b for $a, b \in Z$. Hence prove that if $a, b, c \in Z$ and are such that a < b and 0 < c, then ac < bc. (3 marks)
- e) (i) When is a relation R on a set A said to be an equivalence relation? (2 marks)

(ii) Show that the relation R defined on the set of integers Z by xRy iff

|x| = |y| is an equivalence relation. (3 marks)

f) For the integers a = -357 and b = 13, find the values of q and r that satisfy the conditions in the Division Algorithm (4 marks)

g) Prove that if $a \equiv b \pmod{n}$ and x is any integer, then $ax \equiv bx \pmod{n}$ (3 marks)

QUESTION TWO

- a) Consider the binary operation defined on S = N by a * b = a.
 - i) Using appropriate examples show that the binary operation * is not commutative but is associative (3 marks)
 - ii) Show that for the above binary operation, there is no identity element. (4 marks)
- b) If $n \ge 2$, let \mathbb{Z}_n denote the set $\{0,1,\ldots,n-1\}$ under the operation of multiplication modulo n.
 - i) Construct the multiplication tables for \mathbb{Z}_5 and \mathbb{Z}_6 and using the tables determine which set is a field. (8 marks)
 - ii) Use the table for Z_5 to divide 2 by 3. (2 marks)
- c) Find the inverse of the following matrix, whose entries are elements of \mathbb{Z}_7 :

$$A = \begin{bmatrix} 5 & 2 \\ 6 & 3 \end{bmatrix}$$

QUESTION THREE

- a) i) State the 5 postulates for positive integers. (5 marks)
 - ii) Prove that zero (0) is the unique additive identity on \mathbb{Z} . (3 marks)
- b) i) Find the gcd(a, b) of 1492 and 1776 using the Arithmetic for the Euclidean Algorithm. Hence express the gcd in the form gcd(a, b) = am + bn, $m, n \in \mathbb{Z}$. (7 marks)
 - ii) Show that the integers m and n in equation gcd(a, b) = am + bn are not unique
 (3 marks)
- c) State without proof the Fundamental Theorem of Arithmetic (2 marks)

(3 marks)

QUESTION FOUR

a) i) Define the absolute value |a| of an integer a

(1 mark)

ii) Show that for $a, b \in \mathbb{Z}$, $|a+b| \le |a| + |b|$

(4 marks)

b) i) State the well ordering property for integers

(2 marks)

ii) Prove that 1 is the least positive integer

(4 marks)

iii) Use the principle of mathematical induction to prove that

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
 (6 marks)

QUESTION FIVE

- a) Prove that for the integers a, b and c, if a divides both b and c, the it must also divide ub + vc, $\forall u, v \in \mathbb{Z}$. (2 marks)
- b) Solve the following system of linear congruencies

$$3x + 7y \equiv 4 \pmod{11}$$

$$8x + 6y \equiv 1 \pmod{11}$$

(7 marks)

- c) Show that the relation "congruence modulo 4" defined on the set Z of all integers is an equivalence relation. (5 marks)
- d) Find all solutions to the linear congruence $20x \equiv 14 \pmod{63}$ (6 marks)