

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING/CIVIL ENGINEERING

SMA 2370: CALCULUS IV

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Show that the function,

$$f(x, y) = \begin{pmatrix} \frac{2xy}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \\ & \text{is continuous at every point of the junction except the} \end{cases}$$

origin

 $h(x, y) = x^3 + y^3$

b) Given the function

where x = r - s and y = r + s, find:

(6 marks)

(i)

$$\frac{\partial r}{\partial s}$$

(ii)
 $\frac{\partial u}{\partial s}$
(iii)
 $g(x,y) = x^2 + e^{xy} + 2xz$
(7 marks)
(9 marks)
(9 marks)
(9 marks)
(9 marks)
(9 marks)
(1, 0, 1) in the direction of the line
 $\frac{r^2}{x_0(1,2,4)}$
at
(6 marks)
(9 marks

Question Two

ди

 $x^{2} + y^{2} + z^{2}$ $ax + by + cz = \rho$ given that using Langrange multipliers. **a)** Find the stationary values of (6 marks) **b)** A rectangular box open at the top is to have a capacity of 108m³. Find the dimensions of the box requiring the least material for its construction (7 marks)

 $x^2 + y^2 - z = 0$ by the plane z = 4c) Find the area of the surface cut from the bottom of the paraboloid (7 marks)

Question Three

a) Find the volume of the prism whose base is the triangle in the xy plane bounded by the x-axis and the the line the plane z = 3 - x - y(8 marks)

y

$$\oint (2xy - x^2) dx + (x + y^2) dy$$

b) Verify Green's theorem in the plane for $y = x^2, y^2 = x$ region bounded by

$$=3x$$

and the curve

c) Find the area of the region bounded by the line

where c is the closed curve of the

(12 marks)

(6 marks)

 $y = x^2$

Question Four

a) State Stoke's theorem both in words and in equation form

 $\vec{F} = x \underbrace{i}_{i} + y \underbrace{j}_{i} + 2xy \underbrace{k}_{i}$

b) Verify Stoke's theorem for the vector field using the hemisphere $x^2 + y^2 + z^4$, $z \neq 0$

(12 marks)

(2 marks)

c) Find the area of the region bounded by the line y=3x and the curve (6 marks)

Question Five

a) Given that g is a function of two variables defined by:

$$g(x, y) = \frac{x^3 + y^3}{x - y}, x \neq y, g(x, y) = 0$$

b) Find an equation for the tangent to the ellipse:

$$\frac{x^2}{4} + y^2 = 2$$

at the point (-2, 1) (5 marks)

c) Expand the Fourier series the function f(x) sketched below:(9 marks)

1