

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING/CIVIL ENGINEERING

SMA 2370: CALCULUS IV

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Show that the function,

$$
f(x, y)=\left(\begin{array}{cc}
\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

is continuous at every point of the junction except the
origin

$$
h(x, y)=x^{3}+y^{3}
$$

b) Given the function

$$
\text { where } x=r-s \text { and } y=r+s \text {, find: }
$$

$$
\frac{\partial u}{\partial r}
$$

(i)

$$
\frac{\partial u}{\partial s}
$$

(ii)

$$
g(x, y)=x^{2}+e^{x y}+2 x z
$$

c) Find the directional derivative of at $(1,0,1)$ in the direction of the line

$$
\overrightarrow{P Q}
$$

segment where $P(0,2,4)$

$$
f(x, y, z)=x^{2} y^{2}+z-9=0
$$

d) Find the equation of the tangent plane and the normal line of the surface

$$
\text { at } x_{o}(1,2,4)
$$

e) Show that the integral:

$$
\int_{0}^{1} \frac{\sec x}{x} d x
$$

is divergent

SECTION B (Answer any TWO questions from this section)

Question Two

$$
x^{2}+y^{2}+z^{2} \quad a x+b y+c z=\rho
$$

a) Find the stationary values of given that using Langrange multipliers.
b) A rectangular box open at the top is to have a capacity of $108 \mathrm{~m}^{3}$. Find the dimensions of the box requiring the least material for its construction
(7 marks)

$$
x^{2}+y^{2}-z=0
$$

c) Find the area of the surface cut from the bottom of the paraboloid
(7 marks)

Question Three

a) Find the volume of the prism whose base is the triangle in the $x y$ plane bounded by the x-axis and the the line the plane $\mathrm{z}=3-\mathrm{x}-\mathrm{y}$
(8 marks)

$$
\oint\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y
$$

b) Verify Green's theorem in the plane for where c is the closed curve of the

$$
y=x^{2}, y^{2}=x
$$

region bounded by
(12 marks)
$\begin{array}{ll}y=3 x & y=x^{2}\end{array}$
c) Find the area of the region bounded by the line and the curve

Question Four

a) State Stoke's theorem both in words and in equation form
(2 marks)

$$
\vec{F}=x \underset{\sim}{i}+y \underset{\sim}{j}+2 x y \underset{\sim}{k}
$$

b) Verify Stoke's theorem for the vector field using the hemisphere $x^{2}+y^{2}+z^{4}, z \neq 0$
c) Find the area of the region bounded by the line $y^{y=3 x}$ and the curve $y=x^{2}$ marks)

Question Five

a) Given that g is a function of two variables defined by:

$$
g(x, y)=\frac{x^{3}+y^{3}}{x-y}, x \neq y, g(x, y)=0
$$

when $\mathrm{x}=\mathrm{y}$ show that g is discontinuous at the origin but the first order partial derivative exists at that point
b) Find an equation for the tangent to the ellipse:

$$
\frac{x^{2}}{4}+y^{2}=2 \text { at the point }(-2,1)
$$

c) Expand the Fourier series the function $f(x)$ sketched below:

