

EMBU UNIVERSITY COLLEGE (A CONSTITUENT COLLEGE OF THE UNIVERSITY OF NAIROBI)

SECOND SEMESTER EXAMINATIONS 2013/2014

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 204: CHEMICAL KINETICS AND ELECTROCHEMISTRY

DATE: APRIL 9, 2014

TIME: 8.30 - 10.30AM

INSTRUCTIONS:

ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE

a) Define the following terms by giving relevant examples in each case (5marks)

- i.) Molecularity
- ii.) Transference numbers
- iii.) Pseudo order reaction
- iv.) Conductance
- b) Differentiate between the following concepts

(5marks)

- i.) Asymmetric and electrophoretic effect
- ii.) Electrolysis and kinetics of reaction

Consider the general equation below and use it to answer question c

$A \rightarrow products$

c) If the reaction is first order, then

(5marks)

- i.) Give an integrated rate law expression
- ii.) Give a sketch of a graph showing how one would determine the rate constant
- d) The specific conductivity of a saturated solution of silver chloride at 20 °C is 1.33 x 10⁻⁶ ohm⁻¹cm⁻¹. If the ionic conductivities of Ag⁺ and Cl⁻ at this temperature is 56.9 and 68.4 ohm⁻¹cm⁻¹ equiv⁻¹ respectively, calculate the solubility of the silver chloride

(5marks)

e) State the following concepts and give specific examples

(5marks)

- i.) Faradays first law
- ii.) The law of independent migration of ions
- f) Explain the moving boundary method as a means of determining the transference numbers of ions. Use diagram(s) where necessary (5marks)

QUESTION TWO

a) Sketch the Hittorf apparatus and label accordingly

(5 marks)

- b) Describe how one can be able to derive the transference number using the Hittorf apparatus
 (10 marks)
- c) In a transport experiment in 0.02M NaCl at 25°C by the moving boundary method, it was found out that the boundary between NaCl and CdCl₂ solutions had moved 6.0 cm in 2070 seconds with a current of 0.0016 amp. Calculate transference numbers of Na⁺ and Cl⁻ (5 marks)

QUESTION THREE

a) The following are the conductivities of chloroacetic acid, CH₂ClCOOH, in aqueous solution at 25^oC

[CH ₂ ClCOOH]	16	32	64	128	256	512	1024
λ	53.1	72.4	96.8	127.7	164	205.8	249.2

If the λ_0^0 is 362, graphically show that the data obeys the Ostwalds Dilution Law

(10 marks)

b) The reaction

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

is catalysed by iodide ions. Since the iodide ions are not consumed, we can assume the order with respect to $\rm H_2O_2$ in the same way as for a reaction with a single reactant. The following data were obtained for the decomposition of hydrogen peroxide in 0.02M KI at 25 $^{\rm 0}C$

Time(Minutes)	$[O_2]$		
0	0		
5	7.5		
10	14		
25	28.8		
45	41.2		
65	48.3		
∞	57.9		

c) Graphically show that the order of the reaction with respect to H₂O₂ is one

(8 marks)

d) Determine the rate constant of the reaction at 25°C

(2 marks)

QUESTION FOUR

a) Consider the reaction

$$H_2 + Br_2 \rightarrow 2HBr$$

The rate law is found out to be

$$-\frac{d[H_2]}{dt} = \frac{k_2[H_2][Br_2]^{1/2}}{1 + k_b[HBr]/[Br_2]}$$

i.) Give a plausible mechanism for the reaction and identify the various steps of a chain reaction

(7 marks)

- ii.) Give rate law expressions for all the identified intermediates (5 marks)
- iii.) Show that the reaction obeys the above rate law expression (8 marks)

QUESTION FIVE

- a) Most reactions have their rates change when temperature of a reaction is changed
 - i.) Explain the above observation based on Collision Theory of reactions (5 marks)
 - ii.) Give the Arrhenius equation and explain each symbol accordingly (5 marks)
- b) For the gas phase reaction $H_2 + I_2 \rightarrow 2HI$ at 373 K, it was found that $k = 8.74 \times 10^{-15}$ Lmol⁻¹s⁻¹. At 473 K, it was found that $k = 9.53 \times 10^{-1015}$ Lmol⁻¹s⁻¹. Calculate
 - i) The activation energy of the reaction

(5 marks)

ii) Pre-exponential factor

(5 marks)

---END---