MURANGA UNIVERSITY COLLEGE

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

SMA 2101 CALCULUS I

DATE: DECEMBER 2013

TIME 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE (COMPULSORY) ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Prove the following identities

i.
$$\operatorname{Tan} \left(\mathbf{A} - B \right) = \frac{\tan B - \tan A}{1 + \tan A \tan B}$$
(3 marks)

ii. Tan
$$3A = \frac{3 \tan A - \tan^2 A}{1 - 3 \tan^2 A}$$
 (3 marks)

b) Find the area under the curve
$$y = x^3 + 2x$$
 over interval [0, 1] (2 marks)

c) Evaluate the limits below

a)
$$\lim_{x \to 3} \left(\frac{x+1}{x^2 - 2} \right)$$
 (2 marks)

b)
$$\lim_{x \to -1} \left(\frac{x(x+1)^2}{x} + 4x^3 + 3 \right)$$
 (2 marks)

d) Examine the continuity of the functions below

a) $f(x) = \sin x \text{ as } x \to 0$ (2 marks)

b)
$$f(x) = \frac{x^2 - 1}{x + 1} \text{ as } x \to 1$$
 (2 marks)

e) A manufacturer of canned fruits uses tins with approximate rectangular bases with sides in the ratio 3 : 2 holding 30 cms³ each. What height should the tins be to use as little metal as possible? (4 marks)

f) Find
$$\frac{dy}{dx}$$
 given $y = \frac{x^3}{\sqrt{x+1}}$ (4 marks)

g) Evaluate the integrals $\int_0^{10} x^3 dx$ using the Simpsons rule, five divisions. (3 marks)

h) Evaluate the following integral $\int \sin^2 x \, dx$

(3 marks)

QUESTION TWO (20 MARKS): OPTIONAL

- a) Use first principles to prove that if $f(x) = \cos x$, then $f^{1}(x) = -\sin x$ (6 marks)
- b) The acceleration of a particle t seconds after the start is $(8 6 t^2) \text{ m/s}^2$. Find the velocity and the displacement of the particle in terms of t given that the particle started with a velocity of 2m/s. How far is the particle from the starting point after 2 seconds and what is its velocity? (8 marks)
- c) Evaluate the integrals below

i.
$$\int \frac{dx}{\sqrt{3-x^2}}$$
 (3 marks)

ii.
$$\int e^{x-2} dx$$
 (3 marks)

QUESTION THREE (20 MARKS): OPTIONAL

- a) Show that the gradient of the curve $y = 3\sin\theta \sin^3\theta$, $x = \cos^3\theta$ is $-\cot\theta$ (5 marks)
- b) Find the equation of the tangent and normal to the curve

$$x^2 + 2xy + 3y^2 = 4$$
 at the point where x = 3 (5 marks)

c) Find the area enclosed by the curves $y = x^2 - 5x$ and $y = 3x^2 - 6x$ (10 marks)

QUESTION FOUR (20 MARKS): OPTIONAL

a) Find $\frac{dp}{dk}$ given that

i.
$$p = e^{\tan (k^2 + 1)}$$
 (5 marks)

ii.
$$p = \ln \frac{k}{(k^2 + 1)^{\frac{1}{2}}}$$
 (7 marks)

b) Given the following inverse trigonometric evaluate their derivatives.

i.
$$y = \sin^{-1}3x$$
 (4 marks)

ii.
$$y = \tan^{-1} 3x$$
 (4 marks)