MURANG'A UNIVERSITY COLLEGE
(A constituent college of Jomo Kenyatta University of Agriculture and Technology)

ICS 2211: NUMERICAL LINEAR ALGEBRA
MAIN EXAMINATION
DATE: 10 DECEMBER 2013
TIME 2HOURS

SECTION I (Compulsory)

QUESTION ONE (30 MARKS)

a. Let A be the 3×3 matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$. Find M_{23} and A_{23} (2 marks).
b. Find the determinant of $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 4 & 1 & -1\end{array}\right)$
c. Solve the following linear system using Gaussian Elimination

$$
\begin{gathered}
2 x+y+2 z=5 \\
-2 x+2 z=2 \\
-2 x+y+z=0
\end{gathered}
$$

d. Find the eigen values and eigen vectors for $C=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
e. Check that the coefficient matrix of the following system is symmetric
f. and positive definite. Then, solve the system using LU factorization.

$$
\begin{array}{r}
x_{1}-2 x_{2}+3 x_{3}=2 \\
2 x_{1}-3 x_{2}+2 x_{3}=9 \\
3 x_{1}+x_{2}-x_{3}=-1
\end{array}
$$

SECTION II

Instructions: Answer any TWO questions

QUESTION TWO (20 marks)

a. Compute the LU factorization with partial pivoting, $\mathbf{P A}=\mathbf{L} \mathbf{U}$, for the following matrix (7 marks)

$$
A=\left[\begin{array}{ccc}
1 & 2 & -4 \\
2 & 2 & 0 \\
1 & 3 & 4
\end{array}\right]
$$

b. i. Compute the inverse of $D=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 3 & 4 \\ 2 & 5 & 6\end{array}\right)$.
ii. Use the inverse to solve the System $\mathrm{Dx}=\mathrm{b}$ where $b=\left(\begin{array}{lll}-1 & 1 & 1\end{array}\right)^{T}$
c. Let \mathbf{A} and \mathbf{B} be two nonsingular lower triangular $m \times m$ matrices. Show that the product $\mathbf{A B}$ is also lower triangular.

QUESTION THREE (20 MARKS)

a. Let A be a nonsingular matrix.
i. Show that A^{1} is unique. (3 marks)
ii. Show that A^{1} is nonsingular and $\left(\mathrm{A}^{1}\right)^{1}=\mathrm{A}$. $(3$ marks $)$
iii. \quad Show that A^{T} is nonsingular and $\left(A^{T}\right)^{1}=\left(A^{1}\right)^{T} .(3$ marks $)$
iv. If B is nonsingular, show that $A B$ is nonsingular and $(A B)^{1}=B^{1} A^{1}$.
b. Let $E=\left(\begin{array}{lll}-3 & 1 & 2 \\ -2 & 0 & 2 \\ -2 & 1 & 1\end{array}\right)$. Find the Eigen values and eigen vectors for E.

QUESTION FOUR (20 MARKS)

a. Solve the following linear system using Cramer's rule (10 marks)

$$
\begin{gathered}
2 x+8 y+3 z=2 \\
x+3 y+2 z=5 \\
2 x+7 y+4 z=8
\end{gathered}
$$

b. Solve the following system of equations by $\mathrm{PA}=\mathrm{LU}$ factorization:

$$
\begin{gather*}
x_{1}+2 x_{2}+4 x_{3}=1 \\
4 x_{1}+5 x_{2}+6 x_{3}=2 \\
7 x_{1}+8 x_{2}+9 x_{3}=3 \tag{10marks}
\end{gather*}
$$

