

MURANGA UNIVERSITY COLLEGE

(CONSTITUENT COLLEGE OF JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY)

MAIN EXAMINATION DIPLOMA IN FOOD SCIENCE

SCH 1104: CHEMISTRY

DATE: 14TH DECEMBER, 2015 TIME: 2 HOURS

Instruction to the Candidate

i. Answer Question **ONE** and any other **two** questions

ii. Question one carries 30 marks and while other questions carry 20 marks

QUESTION 1 (30 MARKS)

a.) Define acids and bases according to;

Arrhenius	(1 mark)
Bronsted-Lowry	(1 mark)
Lewis	(1 mark)
	Arrhenius Bronsted-Lowry Lewis

b.) Name four (4) types of electrodes (4 marks)

c.) State the following principles;

i.)	Le Chatelier's Principle	(1 mark)
ii.)	Pauli Exclusion Principle	(1 mark)
iii.)	Hund's Rule	(1 mark)

d.) Write equilibrium constant expressions for the following gas-phase reactions; (6 marks)

ii.)
$$2NOCI_{(g)} \longrightarrow 2NO_{(g)} + CI_{2(g)}$$

iii.)
$$Br_{2(g)} + I_{2(g)} \longrightarrow 2IBr_{(g)}$$

e.) Briefly discuss the working of an Indicator

- (4 marks)
- f.) Name and briefly discuss the four principle quantum numbers (4 marks)
- g.) The pH of some Grape juice at 25°C is found to be 3.45. Calculate;
 - i.) $[H_3O^+]$ (2 marks)
 - ii.) [OH⁻] (2 marks)
 - iii.) pOH (2 marks)

QUESTION 2 (20 MARKS)

- a.) State one limitation each of acid and base definition according to;
 - i.) Arrhenius (2 marks)
 - ii.) Bronsted-Lowry (2 marks)
- b.) Formation of Phosgene (COCl₂) from CO and Cl₂ at 600°C follows the reaction below;

$$CO_{(g)} + Cl_{2(g)} \longrightarrow COCl_{2(g)}$$

Suppose initial partial pressure of CO is 0.6 atm and 1.0 atm for Cl₂. At equilibrium the partial pressure of COCl₂ is found to be 0.1 atm. Calculate;

- i.) Partial pressures of CO and Cl₂ at equilibrium (4 marks)
- ii.) Equilibrium constant (4 marks)
- c.) The atomic numbers of the elements X and Y are 38 and 51 respectively.
 - i.) Write the electronic configurations of X, X⁺, Y⁻ and Y, (4 mark)
 - ii.) State the period and group to which X and Y belong (2 marks)
 - iii.) Predict the formulas of oxides of X and Y (2 marks)

QUESTION 3 (20 MARKS)

a.) Define the following terms:

i.) Diamagnetism (1 mark)

ii.) Paramagnetism (1 mark)

iii.) Ferromagnetism (1 mark)

b.) Calculate the pH of a buffer solution containing 0.4M CH_3COOH and 0.6M CH_3COONa at

25°C (K_a of CH_3COOH is 1.8×10^{-5} at 25°C) (4 marks)

c.) State the following terms;

i.) Isothermic process (1 mark)ii.) Isobaric process (1 mark)iii.) Adiabatic process (1 mark)

d.) Calculate the relative atomic mass of chlorine from the following data;

Isotope	Relative isotopic mass	Fractional abundance
35 <i>Cl</i>	34.97	0.7553
³⁷ Cl	36.95	0.2447

(2 marks)

e.) The following set of quantum numbers are either acceptable or unacceptable, Explain;

i.) (4, 3, +1/2, +1/2) (2 marks) ii.) (1, 1, 0, -1/2) (2 marks) iii.) (2, 0, 0, 1) (2 marks) iv.) (3, 1, 1, 0) (2 marks)

QUESTION 4 (20 MARKS)

a.) State two properties each of;

i.) Acid (2 marks)

ii.) Base (2 marks)

b.) Consider the following equilibrium equation

$$4NO_{2(g)} \longrightarrow 2N_2O_{(g)} + 3O_{2(g)}$$

The three gases are introduced into a reaction vessel at partial pressures 3.6atm, 5.1atm and 8.0atm for NO_2 , N_2O and O_2 respectively. At equilibrium, the partial pressure of NO_2 is found to be equal to 2.4atm. Calculate the equilibrium constant

(6 marks)

- c.) i.) Explain the term reduction in terms of electron movement (2 marks)
 - ii.) Consider the following standard electrode potentials;

$$Fe^{2+} + 2e \rightarrow Fe_{(s)} + E^{\circ}/v = -0.44$$

 $Zn_{(aq)}^{2+} + 2e \rightarrow Zn_{(s)} + E^{\circ}/v = -0.76$

Deduce with reasons, the species reduced if the two half cells are connected in a electrochemical cell. (4 marks)

d.) Draw the shapes of s and p orbitals (4 marks)