

MURANG'A UNIVERSITY EXAMINATION

A Constituent College of Jomo Kenyatta University of Agriculture and Technology

MATH SCI 1112-BASIC COMPUTING MATHEMATICS

DATE: 15TH DECEMBER, 2015 TIME: 2 HOURS

INSTRUCTIONS

ANSWER QUESTION ONE AND ANY TWO QUESTIONS FROM THE OTHER QUESTIO

QUESTION ONE COMPULSORY (30mks)

 Copy and complete the truth table below

А	В	~B	$A \Rightarrow \sim B$
Т	Т		
Т	F		
F	Т		
F	F		

- b) Let $A = \{2,4,6,8,10\}$ and $B = \{1,2,6,10\}$. Find
- i. $A \cup B$ ii. $A \cap B$ (4mks) c) If f(x) = 4x + 2, find i. f(4)

(4mks)

ii. (fof)(2)(4mks)d) Simplify $z = \frac{1-i}{1+i}$ (3mks)e) How many ways are there of arranging the letters of the word:(3mks)

MURANGANIAN f) Find the determinant of the following matrix: (3mks)

a)	$\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$	$ \begin{array}{c} 4 & -1 \\ 3 & -2 \\ 2 & 3 \end{array} $ fy the following leaving your answer in factorial form:	
6/	Jinpi		
16!+15!		(2mks)	
h)	Conve	rt the following as indicated:	
		i. 111 ₈ to base 10	(2mks)
	i	i. 696 ₁₀ to base 16	(2mks)
	ii	i. 10110101 ₂ to base 16	(3mks)

QUESTION 2 (20mks)

a)	Solve the following system of linear equations using Cramers' rule.	(6mks)
	2x + y + z = 1	
	3x + 2y + z = 2	
	2x + y + 2z = -1	
b)	Let $f(x) = x^3 + 3x^2 - 2x - 2$ and $g(x) = x - 1$. Calculate:	
	i. $\frac{f(x)}{g(x)}$	(3mks)
	ii. $(gof)(x)$	(3mks)
	iii. $(f \bullet g)(x)$	(3mks)
	iv. $g(x) - f(x)$	(2mks)
c)	Convert 37 ₁₀ to base 2	(3mks
<u>QU</u>	JESTION THREE (20mks)	
a)	Define the following terms:	(5mks)
	i. Premise	
	ii.Atomic sentence	
	iii.Tautology	
	iv.Compound sentence	
	v.Paradox	
b)	Show that the statement $A \Rightarrow B$ is logically equivalent to ${\sim}B \Rightarrow {\sim}A$	(5mks)
c)	Solve the following quadratic equations:	
	i. $n^2 - 3n = 4$	(3mks)
	ii. $2z^2 = z - 1$	(3mks)
d)	Given $z_1 = 2 + 2i$ and $z_2 = 1 - 3i$, evaluate:	
	i. $z_1 + z_2$	(2mks)
	ii. $i^{3}(z_{2})$	(2mks)

QUESTION FOUR (20mks)

a)	 Define the term Set and give one example of a set. 	
b)	Let $\Re = \{0,1,2,3, \dots, \dots, 100\}$ be the universal set. Compute the following:	
	i. {1,2,3}∪{0,2,4.6}	(1mk)
	ii. {1,6,8}∩ {4,9}	(2mk)
	iii. {1,2,,10} ^c ∩ {1,2,3,4,,100}	(2mks)

- c) Solve the equation: ${}^{x}P_{2} = {}^{4}C_{2}$ (4mks) d) How many different committees of 7 people can be chosen from a group of ten if only
- e) Find:

i. The range and the domain of the function: $f(x) = 2 + \sqrt{(1-x)}$.	(3mks)
ii. The inverse of the function $f(x) = 2x + 1$ and hence evaluate $f^{-1}(9)$	(3mks)

(3mks)

QUESTION FIVE (20mks)

three people qualify for chairmanship.

a) Determine:

i. The inverse of the matrix :
$$\begin{bmatrix} 1 & 4 & -1 \\ 2 & 3 & -2 \\ -1 & 2 & 3 \end{bmatrix}$$
 (4mks)

ii. Hence or otherwise, solve the system of linear equations below:

x + 4y - z = 3			
2x + 3y - 2z = 1			
-x + 2y + 3z = 7			(3mks)

- b) Write down the atomic sentences in the compound sentence below, and hence construct the truth table: " John will visit peter unless it rains." (4mks)
- c) Given that $A = \{1,4,6\}$ and $B = \{2,4,7\}$, evaluate: i. A\B ii. Illustrate the results in (i) above on a Venn diagram. (2mks) (2mks)

d) Given that
$$\mathbf{A} = \begin{bmatrix} 2 & -5 & 4 \\ 6 & 7 & 2 \\ 4 & 5 & 4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -2 & 6 & 7 \\ 3 & -4 & 6 \\ -5 & 8 & 4 \end{bmatrix}$ and $\mathbf{C} = \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$ evaluate:
i. AC and BC
ii. AC+BC (3mks)