

MURANG'A UNIVERSITY EXAMINATION

A Constituent College of Jomo Kenyatta University of Agriculture and Technology

MATH SCI 1112-BASIC COMPUTING MATHEMATICS
DATE: $15^{\text {TH }}$ DECEMBER, 2015
TIME: 2 HOURS

INSTRUCTIONS

ANSWER QUESTION ONE AND ANY TWO QUESTIONS FROM THE OTHER QUESTIO

QUESTION ONE COMPULSORY (30mks)

a) Copy and complete the truth table below:

A	B	$\sim \mathrm{B}$	$\mathrm{A} \Rightarrow \sim \mathrm{B}$
T	T		
T	F		
F	T		
F	F		

b) Let $A=\{2,4,6,8,10\}$ and $B=\{1,2,6,10\}$. Find
i. $A \cup B$
ii. $A \cap B$
c) If $f(x)=4 x+2$, find
i. $\quad f(4)$
ii. (fof)(2)
d) Simplify $z=\frac{1-i}{1+i}$
e) How many ways are there of arranging the letters of the word:

MURANGANIAN
f) Find the determinant of the following matrix:
$\left[\begin{array}{ccc}1 & 4 & -1 \\ 2 & 3 & -2 \\ -1 & 2 & 3\end{array}\right]$
g) Simplify the following leaving your answer in factorial form:

$$
16!+15!
$$

h) Convert the following as indicated:
i. $\quad 111_{8}$ to base 10
ii. $\quad 696_{10}$ to base 16
iii. 10110101_{2} to base 16

QUESTION 2 (20mks)

a) Solve the following system of linear equations using Cramers' rule.
$2 x+y+z=1$
$3 x+2 y+z=2$
$2 x+y+2 z=-1$
b) Let $f(x)=x^{3}+3 x^{2}-2 x-2$ and $g(x)=x-1$. Calculate:
i. $\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}$
ii. (gof) (x)
iii. $\quad(f \bullet g)(x)$
iv. $\quad g(x)-f(x)$
c) Convert 37_{10} to base 2

QUESTION THREE (20mks)

a) Define the following terms:
i. Premise
ii.Atomic sentence
iii.Tautology
iv.Compound sentence
v.Paradox
b) Show that the statement $A \Rightarrow B$ is logically equivalent to $\sim B \Rightarrow \sim A$
c) Solve the following quadratic equations:
i. $n^{2}-3 n=4$
ii. $2 z^{2}=z-1$
d) Given $\mathrm{z}_{1}=2+2 \mathrm{i}$ and $\mathrm{z}_{2}=1-3 \mathrm{i}$, evaluate:
i. $z_{1}+z_{2}$
ii. $i^{3}\left(z_{2}\right)$

QUESTION FOUR (20mks)

a) Define the term Set and give one example of a set.
(2mks)
b) Let $\Re=\{0,1,2,3, \ldots \ldots \ldots, 100\}$ be the universal set. Compute the following:
i. $\{1,2,3\} \cup\{0,2,4.6\}$
ii. $\{1,6,8\} \cap\{4,9\}$
iii. $\{1,2, \ldots \ldots \ldots . .10\}^{c} \cap\{1,2,3,4, \ldots \ldots \ldots, 100\}$
c) Solve the equation:
${ }^{\mathrm{X}} \mathrm{P}_{2}={ }^{4} \mathrm{C}_{2}$
(4mks)
d) How many different committees of 7 people can be chosen from a group of ten if only three people qualify for chairmanship.
e) Find:
i. The range and the domain of the function: $f(x)=2+\sqrt{(1-x)}$.
ii. The inverse of the function $f(x)=2 x+1$ and hence evaluate $f^{-1}(9)$

QUESTION FIVE (20mks)

a) Determine:
i. The inverse of the matrix : $\left[\begin{array}{ccc}1 & 4 & -1 \\ 2 & 3 & -2 \\ -1 & 2 & 3\end{array}\right]$
ii. Hence or otherwise, solve the system of linear equations below:

$$
\begin{align*}
& x+4 y-z=3 \\
& 2 x+3 y-2 z=1 \\
& -x+2 y+3 z=7 \tag{3mks}
\end{align*}
$$

b) Write down the atomic sentences in the compound sentence below, and hence construct the truth table: " John will visit peter unless it rains."
c) Given that $A=\{1,4,6\}$ and $B=\{2,4,7\}$, evaluate:
i. $A \backslash B$
ii. Illustrate the results in (i) above on a Venn diagram.
d) Given that $\mathbf{A}=\left[\begin{array}{ccc}2 & -5 & 4 \\ 6 & 7 & 2 \\ 4 & 5 & 4\end{array}\right], \mathbf{B}=\left[\begin{array}{ccc}-2 & 6 & 7 \\ 3 & -4 & 6 \\ -5 & 8 & 4\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{c}3 \\ 4 \\ -2\end{array}\right]$ evaluate:
i. $\mathbf{A C}$ and $\mathbf{B C}$
ii. $\quad A C+B C$

