

MURANG'A UNIVERSITY COLLEGE

A constituent college of Jomo Kenyatta University of Agriculture and Technology
University Examination 2014/2015
END OF SEMESTER EXAMINATION FOR THE DIPLOMA IN CIVIL ENGINEERING
SEB 1121 ENGINEERING MATHEMATICS II
DATE: DECEMBER 2015 TIME: 2 HOURS
Instructions: Attempt question Oneand Two other questions

QUESTION ONE (30 marks)

a. Define the term trigonometry
b. Solve the following complex numbers for values of a and b
i. $\quad 2(a+b i)=4-3 i$
ii. $\quad(i-2)(i+1)=a+b i(2 \mathrm{mks})$
c. Given that $x=2 i+j-k$ and $y=7 i-2 j-3 k$, find the value of $x . y$
d. Find without using tables or calculators the value of
i. $\tan 150^{\circ}$
ii. $\quad \sin \left(60^{\circ}-45^{\circ}\right)$
e. Find the vector product of the vectors i.e $a \times b$ if $a=i+3 j+2 k$ and $b=6 i-5 j-4 k$
(5mks)
f. Calculate the remaining angles and side of a triangle $X Y Z$ in which $x=8 \mathrm{~cm}, \mathrm{z}=10 \mathrm{~cm}$ and angle $\mathrm{Z}=80^{\circ}$. Thereafter calculate the radius of the circum-circle of the triangle A.($\mathbf{6 m k s}$)
g. Show that $\frac{\cos a \sin ^{2} a+\cos ^{3} a}{\sin a}=\cot a$

QUESTION TWO (20 marks)

a. Proof the identity
i. $\quad \sin b \cot b=\cos b$

(2mks)

ii. $\frac{\tan ^{2} a+1}{\tan ^{2} a}=\operatorname{cosec}^{2} a$
b. Solve the triangle PQR given that $\mathrm{p}=7 \mathrm{~cm}, \mathrm{q}=4 \mathrm{~cm}$ and $\mathrm{R}=40^{\circ}$.
c. Given that $\cos \mathrm{A}=\frac{4}{5}$ and $\sin \mathrm{B}=\frac{15}{17}$ where A and B are acute angles, find without using trigonometric tables the values of $\cos (A+B)$ and $\sin (A-B)$.

QUESTION THREE (20marks)

a. Given that $a=i+2 j-3 k$ and $b=2 i+2 j-k$ are vectors find the value of
i. $\quad a * b$
ii. Hence find the angle between vectors a and b
b. Without using mathematical tables, find the values of $\sin 15^{\circ}$ and $\cos 75^{\circ}$. Leave your answer in surd form.
c. Solve the equation $8 \sin ^{2} x+2 \sin x=1$ for $0^{0}<x<360^{\circ}$

QUESTION FOUR (20 marks)

a. Express the following complex number $\frac{1}{1+3 i}$ in the form having a real number and a denominator
b. Given that $z_{1}=i+4, z_{2}=2 i+1$, find the value of z_{3} in the form $a+b i$ given that

$$
\begin{equation*}
\frac{1}{z_{3}}=\frac{1}{z_{1}}+\frac{1}{z_{2}} \tag{8mks}
\end{equation*}
$$

c. Given that $a=i-2$ and $b=2 i+1$ express in the form of $a+b i$ the following complex numbers
i. $a . a$
(4mks)
ii. $\quad \frac{b}{a}-b$
(5mks)

QUESTION 5 (20MKS)

a. Given that $a=2 i-1$ and $b=i+6$ are complex numbers, express in the form of $a+$ $b i$ the following complex numbers
i. $b^{2}-a^{2}$
ii.
iii. (4mks)
b. Given that $p=i+2 j-2 k$ and $q=2 i+3 j+k$ are vectors find the value of
i. $p . q$
ii. $\quad p * q(4 \mathrm{mks})$

Hence find the angle between vectors p and q

