

MURANG'A UNIVERSITY COLLEGE A constituent college of Jomo Kenyatta University of Agriculture and Technology University Examination 2014/2015 END OF SEMESTER EXAMINATION FOR THE DIPLOMA IN CIVIL ENGINEERING SEB 1121 ENGINEERING MATHEMATICS II DATE: DECEMBER 2015 TIME: 2 HOURS

Instructions: Attempt question One and Two other questions

<u>QUESTION ONE</u> (30 marks)

a.	Define the term trigonometry	(1mk)
b.	Solve the following complex numbers for values of a and b	
	i. $2(a+bi) = 4-3i$	(2mks)
	ii. $(i-2)(i+1) = a + bi$ (2mks)	
c.	Given that $x = 2i + j - k$ and $y = 7i - 2j - 3k$, find the value of $x \cdot y$	(3mks)
d.	Find without using tables or calculators the value of	
	i. tan 150 ⁰	(4mks)
	ii. $\sin(60^{\circ} - 45^{\circ})$	(4mks)
e.	Find the vector product of the vectors i.e $a \times b$ if $a = i + 3j + 2k$ and $b = 6i - 2k$	5 <i>j</i> — 4 <i>k</i>
		(5mks)
f.	Calculate the remaining angles and side of a triangle XYZ in which x=8cm, z=10	cm and
	angle Z=80 ⁰ . Thereafter calculate the radius of the circum-circle of the triangle A.(6mks)	

g. Show that
$$\frac{\cos a \sin^2 a + \cos^3 a}{\sin a} = \cot a$$
 (3mks)

<u>QUESTION TWO</u> (20 marks)

a. Proof the identity

i.
$$\sin b \cot b = \cos b$$
 (2mks)

ii.
$$\frac{\tan^2 a + 1}{\tan^2 a} = \csc^2 a$$
 (3mks)

- b. Solve the triangle PQR given that p=7cm, q=4cm and $R=40^{0}$. (5mks)
- c. Given that $\cos A = \frac{4}{5}$ and $\sin B = \frac{15}{17}$ where A and B are acute angles, find without using trigonometric tables the values of $\cos (A + B)$ and $\sin(A B)$. [6 Marks]

QUESTION THREE (20marks)

- a. Given that a = i + 2j 3k and b = 2i + 2j k are vectors find the value of
 - i. a * b (2mks)
- ii. Hence find the angle between vectors *a* and *b* (7mks)
- b. Without using mathematical tables, find the values of sin 15⁰ and cos 75⁰. Leave your answer in surd form. (6mks)
- c. Solve the equation $8sin^2x + 2sin x = 1$ for $0^0 < x < 360^0$ (5mks)

<u>QUESTION FOUR</u> (20 marks)

- a. Express the following complex number $\frac{1}{1+3i}$ in the form having a real number and a denominator (3mks)
- b. Given that $z_1 = i + 4$, $z_2 = 2i + 1$, find the value of z_3 in the form a + bi given that

$$\frac{1}{z_3} = \frac{1}{z_1} + \frac{1}{z_2}$$
(8mks)

- c. Given that a = i 2 and b = 2i + 1 express in the form of a + bi the following complex numbers
 - i. *a.a* (4mks)

ii.
$$\frac{b}{a} - b$$
 (5mks)

QUESTION 5 (20MKS)

- a. Given that a = 2i 1 and b = i + 6 are complex numbers, express in the form of a + bi the following complex numbers
 - i. $b^2 a^2$
 - ii.
- iii. (4mks)
- b. Given that p = i + 2j 2k and q = 2i + 3j + k are vectors find the value of
 - i. p.q (3mks) ii. p * q (4mks)

Hence find the angle between vectors *p* and *q*

(9mks)

•