

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya. Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411 Fax: 064-30321 Website: www.mucst.ac.ke Email: info@mucst.ac.ke

University Examinations 2014/2015

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER TECHNOLOGY.

BCT 2206: DIGITAL ELECTRONICS

DATE: DECEMBER 2014

TIME: 2 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE (30 MARKS)

a)	Convert $(2F9A)_{16}$ to its equivalent binary numbers	(2 marks)	
b)	What are k-maps?	(2 marks)	
c)	Prove that $A\overline{B} + \overline{A}B + A = A + B$	(3 marks)	
d)	State three applications of flip-flops	(3 marks)	
e)	Draw the logic circuit of a full-adder and hence prepare its truth table.	(5 marks)	
f)	Design a logic circuit to realize this function $Y = \overline{(\overline{AB} + \overline{B}\overline{C})}$	(3 marks)	
g)	Implement a NOT gate using NOR gates only	(3 marks)	
h)	Differentiate between synchronous and asynchronous logic circuit	(4 marks)	
i)	Define the following terms		
	(i) Binary counters	(2 marks)	
	(ii) Multiplexers	(2 marks)	

QUESTION TWO (20 MARKS)

a)	() Convert the following logic expressions to a Standard Sum of Pro		um of Products (S	oducts (SOP) form		
	(i)	$\overline{A} + AB + AB\overline{C}$				(3 marks)

(ii)
$$A\overline{B} + C + \overline{B}C\overline{D} + AC\overline{D}$$
 (4 marks)

b)	Given	the logic expression $F = \overline{AB} + \overline{ABC} + AB\overline{C} + A\overline{BC}$			
	(i)	Convert it to a standard sop form	(1 mark)		
	(ii)	Map the standard sop expression onto k-map	(2 marks)		
	(iii)	Simplify the expression using k-map	(3 marks)		
c)	Devel	op a truth table for the logic expression $Y = ABC + ABC + ABC$	(3 marks)		
d)) Find Two's compliment				
	(i)	1101010	(1 mark)		
	(ii)	111011010	(1 mark)		
e)	Add tl	ne hexadecimal number 07F+05B	(2marks)		

QUESTION THREE (20 MARKS)

a)	Why is S=R=1 not permitted in S-R flip-flops?	(2 marks)		
b)	Design a 3- input shift register and explain how the Binary 110 can be load	ded into the		
	registers	(6 marks)		
c)	Explain with help of a truth table the working of a J-K flip-flop	(5 marks)		
d)	(i) Write a count sequence of a 3-bit down counter	(2 marks)		
	(ii) Design a logic circuit of the above sequence	(3 marks)		
e)	State two application of shit registers	(2 marks)		
QUESTION FOUR (20 MARKS)				
a)	Explain briefly the working of half Adder	(4 marks)		

b) With the help of a block diagram, explain how the two signals 1.01 and 110 can be added using parallel full Adders (5 marks)
c) Differentiate between a multiplexer and a demultiplexers (4 marks)
d) Design a 64x1 multiplexer using 16x1 multiplexers

e) State two applications of multiplexers (2 marks)