MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217.064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.mucst.ac.ke Email: info@mucst.ac.ke

University Examinations 2014/2015

SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER TECHNOLOGY.

BCT 2206: DIGITAL ELECTRONICS
DATE: DECEMBER 2014
TIME: 2 HOURS
INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE (30 MARKS)

a) Convert $(2 F 9 A)_{16}$ to its equivalent binary numbers (2 marks)
b) What are k-maps?
c) Prove that $A \bar{B}+\bar{A} B+A=A+B$
d) State three applications of flip-flops
e) Draw the logic circuit of a full-adder and hence prepare its truth table.
f) Design a logic circuit to realize this function $\mathrm{Y}=(\overline{\bar{A} B+\bar{B} \bar{C}})$
g) Implement a NOT gate using NOR gates only
h) Differentiate between synchronous and asynchronous logic circuit
i) Define the following terms
(i) Binary counters
(ii) Multiplexers

QUESTION TWO (20 MARKS)

a) Convert the following logic expressions to a Standard Sum of Products (SOP) form
(i) $\bar{A}+A B+A B \bar{C}$
(ii) $A \bar{B}+C+\bar{B} C \bar{D}+A C \bar{D}$
b) Given the logic expression $\mathrm{F}=\bar{A} B+\bar{A} \bar{B} \bar{C}+A B \bar{C}+A \bar{B} \bar{C}$
(i) Convert it to a standard sop form (1 mark)
(ii) Map the standard sop expression onto k-map
(iii) Simplify the expression using k-map
c) Develop a truth table for the logic expression $\mathrm{Y}=A \bar{B} C+\bar{A} B \bar{C}+A B C$
d) Find Two's compliment
(i) 1101010 (1 mark)
(ii) 111011010
e) Add the hexadecimal number $07 \mathrm{~F}+05 \mathrm{~B}$

QUESTION THREE (20 MARKS)
a) Why is $S=R=1$ not permitted in S-R flip-flops?
b) Design a 3-input shift register and explain how the Binary 110 can be loaded into the registers
c) Explain with help of a truth table the working of a J-K flip-flop
d) (i) Write a count sequence of a 3-bit down counter
(ii) Design a logic circuit of the above sequence
e) State two application of shit registers

QUESTION FOUR (20 MARKS)

a) Explain briefly the working of half Adder
b) With the help of a block diagram, explain how the two signals 1.01 and 110 can be added using parallel full Adders
c) Differentiate between a multiplexer and a demultiplexers
d) Design a 64×1 mulitplexer using 16×1 multiplexers
e) State two applications of multiplexers

