Murang'a University College

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology) University Examination 2014/2015
School of Engineering and Technology
Supplementary Examination for Diploma in Electrical Engineering SEE 1207: ENGINEERING MATHEMATICS IV

Date: August 2015
2 Hours
Instructions: Attempt Question One and any other Two Questions.

Question One (30 Marks)

a) Find the general solution to the differential equation $\frac{d y}{d x}=1+2 y$
b) Find the particular solution to the differential equation $x y d y-\left(x^{2}+y^{2}\right) d x=0$ given that $y=4$ when $x=1$
c) Given the data in the table below

x	1	4	9	14	23
$f(x)$	12	18	7	-22	-73

Use linear interpolation to find
i) $f(3)$
ii) $f(17)$
d) Find the particular solution to the differential equation $(2 x \cos (y)+2 y) d x+\left(2 x-x^{2} \sin (y)\right) d y=0$ given that $y=0$ when $x=2$
e) Find the general solution to the differential equation $x \frac{d y}{d x}+3 y=\frac{\cos (2 x)}{x^{2}}$
f) Find the general solution to the differential equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+4 y=0$

Question Two (20 Marks)
a) Use Newton-Raphson method to find the root of the equation $2 x^{3}-5 x-12=0$ which is near $x=2.5$ correct to four decimal places
b) Given the data in the table below, use Newton-Gregory forward difference interpolating polynomial to find the value of $f(4)$

x	-3	-1	1	3	5
$f(x)$	-51	-9	-15	27	213

Question Three (20 Marks)

a) Find the general solution to the differential equation $(x y-2 y) d x+x y^{2} d y=0$
b) Use the method of undetermined coefficients to find the general solution to the differential equation

$$
\begin{equation*}
3 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=5 \cos (x) \tag{15Marks}
\end{equation*}
$$

Question Four (20 Marks)

A resistor of resistance of 100Ω and a coil of inductance of 0.5 H are connected in series with a battery of 20 volts. Assuming that $i=0$ when $t=0$. Find the current flowing in the circuit at any later time t seconds

Question Five (20 Marks)

a) Find the solution to the differential equation $\frac{d y}{d x}=\sec x+y \tan x$ given that $y=1$ when $x=0$
b) Find the particular solution to the differential equation $x \frac{d y}{d x}=y-x$ given that $y=2$ when $x=1$

