

Murang'a University College

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology) University Examination 2014/2015

School of Engineering and Technology Supplementary Examination for Diploma in Electrical Engineering SEE 1207: ENGINEERING MATHEMATICS IV

Date: August 2015

2 Hours

Instructions: Attempt Question $\underline{\mathbf{One}}$ and any other $\underline{\mathbf{Two}}$ Questions.

Question One (30 Marks)

- a) Find the general solution to the differential equation $\frac{dy}{dx} = 1 + 2y$ (5 Marks)
- b) Find the particular solution to the differential equation $xydy (x^2 + y^2)dx = 0$ given that y = 4when x = 1 (6 Marks)
- c) Given the data in the table below

x	1	4	9	14	23
f(x)	12	18	7	-22	-73
Ugo li	noor	intor	nol	ation	tofin

Use linear interpolation to find

- i) *f(3)*
- ii) f(17) (5 Marks)
- d) Find the particular solution to the differential equation $(2x\cos(y)+2y)dx+(2x-x^2\sin(y))dy=0$ given that y=0 when x=2 (6 Marks)
- e) Find the general solution to the differential equation $x\frac{dy}{dx} + 3y = \frac{\cos(2x)}{x^2}$ (4 Marks)
- f) Find the general solution to the differential equation $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 4y = 0$ (4 Marks)

Question Two (20 Marks)

a) Use Newton-Raphson method to find the root of the equation $2x^3 - 5x - 12 = 0$ which is near x = 2.5 correct to four decimal places (11 Marks)

b) Given the data in the table below, use Newton-Gregory forward difference interpolating polynomial to find the value of f(4)

x	-3	-1	1	3	5
f(x)	-51	-9	-15	27	213

Question Three (20 Marks)

- a) Find the general solution to the differential equation $(xy 2y)dx + xy^2dy = 0$ (5 Marks)
- b) Use the method of undetermined coefficients to find the general solution to the differential equation

$$3\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 5\cos(x)$$
(15 Marks)

Question Four (20 Marks)

A resistor of resistance of 100Ω and a coil of inductance of 0.5 H are connected in series with a battery of 20 volts. Assuming that i = 0 when t = 0. Find the current flowing in the circuit at any later time t seconds (20 Marks)

Question Five (20 Marks)

- a) Find the solution to the differential equation $\frac{dy}{dx} = \sec x + y \tan x$ given that y = 1when x = 0 (8 Marks)
- b) Find the particular solution to the differential equation $x\frac{dy}{dx} = y x$ given that y = 2 when x = 1 (12 Marks)