MURANG’A UNIVERSITY COLLEGE
A Constituent College of Jomo Kenyatta University of Agriculture and Technology University Examination 2015/2016

YEAR II SEMESTER I EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

ICS 2211: NUMERICAL LINEAR ALGEBRA
DATE: 9^{TH} December 2015
TIME: 2 HOURS
Instructions: Attempt question One and Two other questions

Question One ($\mathbf{3 0}$ Marks)

a) Given the matrices

$$
A=\left(\begin{array}{ll}
3 & 6 \\
5 & 1 \\
4 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
3 & -2 & 7 \\
5 & 8 & 3
\end{array}\right)
$$

Show that $A \cdot B$ is singular
b) Prove that the inverse of a square matrix is unique.
c) Use the Chio's condensation method to find the determinant of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 4 & 1 \tag{5Marks}\\
1 & -2 & -3 \\
-3 & 6 & 5
\end{array}\right)
$$

d) Use the iterative method to find the inverse of the matrix $A=\left(\begin{array}{cc}4 & 5 \\ 1 & -2\end{array}\right)$ given that its approximate inverse is $\left(\begin{array}{cc}0.1 & 0.4 \\ 0.1 & -0.3\end{array}\right)$ (Perform two iterations)
(5Marks)
e) Show that the characteristic equation of any 2 by 2 matrix A is given by

$$
\lambda^{2}-[\operatorname{tr}(A)] \lambda+|A|=0
$$

where $\operatorname{tr}(A)-$ is the trace of the matrix A and

$$
|A| \text { - is the determinant }
$$

f) Find a square matrix of order 2 whose Eigen values are $\lambda_{1}=-1, \lambda_{2}=2$ and whose Eigen vectors are $X_{1}=\left(\begin{array}{ll}2 & 3\end{array}\right)^{T}$ and $X_{2}=\left(\begin{array}{ll}3 & 4\end{array}\right)^{T}$
(5 Marks)

Question Two (20 Marks)

a) Find the Eigen values and the corresponding Eigen vectors of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \tag{13Marks}\\
1 & 2 & 1 \\
-2 & 1 & -1
\end{array}\right)
$$

b) Use power method to find the dominant Eigen value of the matrix

$$
A=\left(\begin{array}{ccc}
5 & 2 & 4 \\
-3 & 6 & 2 \\
3 & -3 & 1
\end{array}\right)
$$

Use $X^{(0)}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{t}$ and perform two iterations
(7 Marks)

Question Three (20 Marks)

a) Given the matrix $A=\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$ find a matrix P such that $P^{-1} A P=D$ where D is a diagonal matrix.
b) Use matrix inversion method to find the solution to the linear system of equations;

$$
\begin{align*}
& x_{1}-4 x_{2}-2 x_{2}=21 \\
& 2 x_{1}+x_{2}+2 x_{3}=3 \\
& 3 x_{1}+2 x_{2}-x_{3}=-2 \tag{11Marks}
\end{align*}
$$

Question Four (20 Marks)

a) Use Cramer's rule to find the solution to the linear system of equations

$$
\begin{align*}
& 4 x-5 y-z=9 \\
& 3 x-2 y+2 z=16 \\
& x+3 y+4 z=15 \tag{11Marks}
\end{align*}
$$

b) Apply the method of steepest descent to find the local minimum of the function

$$
\begin{equation*}
f(x)=x_{1}^{2}+x_{2}^{2} \quad \text { given } X^{(0)}=(2,2) \tag{9Marks}
\end{equation*}
$$

Question Five (20 Marks)

a) Find the spectral norm $\left(\|A\|_{2}\right)$ of the matrix

$$
A=\left(\begin{array}{cc}
1 & -1 \tag{4Marks}\\
-1 & 3
\end{array}\right)
$$

b) Consider the matrix

$$
A=\left(\begin{array}{cc}
13 & 5 \\
2 & 4
\end{array}\right)
$$

Given that the dominant Eigen value is $\lambda=14$ and the associated eigenvector is $X=\binom{1}{0.2}$.
Use deflation technique to find the other Eigen value of the matrix A and the associated Eigen vector (Perform two iterations)
c) Set-up the Gauss-Seidel method for the system of equations

$$
\begin{aligned}
& 8 x_{1}-x_{2}+x_{3}=5 \\
& x_{1}-5 x_{2}-2 x_{3}=-14 \\
& 3 x_{1}-2 x_{2}+10 x_{3}=10
\end{aligned}
$$

Hence solve the system taking $x^{(0)}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{t}$ (perform three iterations)

