MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL
ENGINEERING
EEE 0234: POWER ELECTRONICS
DATE: APRIL 2014
TIME: $1^{1 ⁄ 2}$ HOURS
INSTRUCTIONS: Answer question one and any other two questions
QUESTION ONE - (30 MARKS)
(a) Fig. 1 shows a thyristor device

(i)	Name the device of Fig. 1	(1 Mark)
(ii)	Draw its operation	(1 Mark)
(iii)	Describe its operation	(2 Marks)
(iv)	Draw its V - I characteristics	(2 Marks)
(i) State the meaning of a thyristor.	(1 Mark)	

(ii) Give the constructional details of a thyristor, its schematic diagram and symbol.
(4 Marks)
(iii) Describe the different modes of operation of a thyristor with the help of its static V-1 characteristics.
(iv) Discuss the conditions which must be satisfied for turning on an SCR with gate signal.
(4 Marks)
(c) Explain in relation to a thyristor
(i) Line commutation
(1 Mark)
(ii) Forced commutation
(1 Mark)
(d) Define
(i) Holding current
(1 Mark)
(ii) Latching current
(e) Fig 2 is a converter.
(i) Derive the expression to the mean dc power to the load R_{L}.
(2 Marks)
(ii) A $40 \mathrm{~K} \Omega$ resistive load is driven by $230 \mathrm{~V}_{\text {rms }}$. For a firing angle of 45° during each positive cycle, determine the average dc power.
(5 Marks)

QUESTION TWO - (15 MARKS)

(a) Define the following terms as used in filters
(i) Filter network
(2 Marks)
(ii) Characteristic impedance
(2 Marks)
(iii) Alternation
(1 Mark)
(b) Derive the expression for the cut-off frequency of T-type high pass filter. (3 Marks)
(c) A T-type high pas filter having a cut-off frequency of 8 KHZ is to be used in a transmission line having an impedance of $500 \mathrm{~L} \theta \pi$. Assuming the elements to be non-
dissipative, determine the values of the shunt and series elements. Draw the resultant filter network.
(d) A two transistor analogy of a SCR has the following data, gain of PNP transistor is 0.42 , gain of NPN transistor is 0.54 and rated gate triggering current $=68 \mathrm{~mA}$.
(i) Derive the expression for the anode current.
(1 Mark)
(ii) Calculate the value of anode current.

QUESTION THREE - (15 MARKS)

(a) Explain choppers
(i) Step up
(1 Mark)
(ii) Step down
(1 Mark)
(b) Fig. 3 is RL converter
(i) Explain the operation of the FD in fig. 2
(3 Marks)
(ii) State and explain the modes of the circuit operation.
(3 Marks)
(c) For the chopper in Fig. 4
(i) Explain the principle of operation of fig. 4 (1 Mark)
(ii) Name a device used in place of chopper switch.
(1 Mark)
(iii) Show waveforms of input current and voltage and output current and voltage.
(iv) Calculate output voltage when input is 50 V and duty cycle is 5 ms . (2 Marks)
(v) Distinguish between pulse width modulation and frequency modulation.
(2 Marks)

QUESTION FOUR - (15 MARKS)

(a) State the meaning of a controller.
(1 Mark)
(b) Sketch diagram of a full wave controller. Show the waveforms of V_{0} and i_{0} of the device.
(2 Marks)
(c) For the controller in (b) it is given that source voltage is given 230 V at frequency 50 HZ and load resistance in 3ohms. Calculate for any firing angle alfa:
(i) Average current.
(1 Mark)
(ii) RMS current
(1 Mark)
(iii) Minimum turn off time
(d) For a chopper explain;
(i) Pulse modulation
(1 Mark)
(ii) Frequency modulation (1 Mark)
(e) It is predicted that in future automation may use choppers for brake and speed control. (-- Marks)
(f) State two advantages offered by the chopper in such application.
(g) Sketch a chopper diagram with RL load plus FD and use it to answer the following question;
(i) Which device can be used to represent the switch?
(1 Mark)
(ii) Explain the operation of the chopper above.
(1 Mark)
(iii)Discuss the principle of operation of chopper above. (1 Mark)
(iv) Given for the above chopper that turn-on time is 0.02 sec and turn-off time is 0.05 sec and source voltage is 230 V . Calculate

- Output voltage.
- Chopping period
(1 Mark)
- Duty cycle

