

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL ENGINEERING

EEE 0233: DIGITAL ELECTRONICS II

DATE: APRIL 2014

TIME: 1 ¹/₂ HOURS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE – (30 MARKS)

- (a) Define the following terms as used in digital electronics
 - (i) Flip-flip

	(ii)	Register		
	(iii)	Counter	(6 Marks)	
(b)	Explain	n clearly the difference between the following		
	(i)	Combinational and sequential circuits		
	(ii)	Racing and toggling	(4 Marks)	
(c)	Simplify the following expression and show the minimum gate implementation			
	Y = AI	$B\bar{C}\bar{D} + \bar{A}B\bar{C}\bar{D} + A\bar{B}\bar{C}$	(4 Marks)	
(d)	With th	With the aid of a logic diagram, explain the operation of the NAND gate latch.		
			(5 Marks)	

The figure above show a transistor logic circuit.

- (i) Describe its operation
- (ii) Draw its diode equivalent circuit
- (iii) Draw the truth table for the TTL circuit above. (7 Marks)
- (f) The figure below shows a combinational logic circuit. Derive the Boolean expression for the circuit at point Y.
 (4 Marks)

QUESTION TWO – (15 MARKS)

(a) State the Demorgan's theorems.	(2 Marks)
(b) Simplify the following expression using Demorgan's theorem	

$$\overline{\overline{A(B+\bar{C})}D}$$
 (3 Marks)

(c) Discuss NOR gate as a universal gate. Hence or otherwise draw the truth table and electronic switching circuit of NOR gate. (10 Marks)

QUESTION THREE – (15 MARKS)

(a) Simplify the following Boolean expression using the Kan	rnough Mapping technique
$X = \bar{A}B + \bar{A}\bar{B}C + AB\bar{C} + A\bar{B}\bar{C}$	(5 Marks)
(b) Draw and explain the working a mater – slaup J-K flip fl	op using NINE NAND gates.
Explain how the race around problem is eliminated in the	e master sloup J-K flip flop.
	(10 Marks)

QUESTION FOUR – (15 MARKS)

(a) Discuss the two types of registers.	(8 Marks)
(b) Draw and explain the working of a 4-bit binary ripple counter.	(7 Marks)