

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

FIRST SEMESTER EXAMINATIONS

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

TBS 104: INTRODUCTION TO MATHEMATICS FOR ECONOMISTS

DATE: DECEMBER 10, 2015 TIME: 14:00-16:00

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

a) Let $A = \{a, c, g, i\}$, $B = \{b, d, e, f, i\}$, and $C = \{a, b, c, d, e\}$ be subsets of a universal set $E = \{a, b, c, d, e, f, g, h, i\}$. Determine the following:

(i)
$$A \cup C$$
 (1 mark)

(ii)
$$A \cap B$$

(iii)
$$n(A \cup B)$$
 (2 marks)

(iv) B-C (2 marks)
$$(2 \text{ marks})$$
 (2 marks)

b) Determine the domain of the function
$$f(x) = \frac{\sqrt{x^2 - x - 2}}{x + 4}$$
 (4 marks)

c) If
$$g(x) = 2x^2 + 4$$
 and $h(x) = \frac{5}{x}$, determine the composite function $h \circ g$ (2 marks)

d) Determine $\frac{dy}{dx}$ in each of the following:

$$y = \sqrt[5]{x} - \frac{4}{x^2}$$
 (2 marks)

(ii)
$$y = \sqrt{3x^2 - 5x + 9}$$
 (2 marks)

e) Evaluate the integral
$$\int \left(\sqrt{x} + 5x^2 - \frac{3}{x^2}\right) dx$$
 (2 marks)

f) Compute the determinant of the matrix
$$M = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix}$$
. (2 marks)

g) Determine the production level that will maximize profit for a company with cost function

$$C(x) = 16000 + 500x - 1.6x^2 + 0.004x^3$$
 and demand function $p(x) = 1700 - 7x$

(8 marks)

QUESTION TWO

(a) Determine $\frac{dy}{dx}$ in each of the following:

(i)
$$y = \sqrt[5]{x} + \frac{3}{x^2} + 7\cos\theta$$
 (2 marks)

(ii)
$$y = \frac{5+2x}{x+3}$$
 (2 marks)

(iii)
$$y = \sqrt[3]{9x^2 + 15x - 17}$$
 (3 marks)

(iv)
$$y = (2x + 1)\sqrt{3x}$$
 (2 marks)

(b) In a certain company, the cost (in shillings) of producing x items is given by C(x) =

 $25000 + 120x + 0.1x^2$. Determine:

QUESTION THREE

(a) Prove that if A and B are any two subsets of a universal set E, then

$$(A \cap B)^c = A^C \cup B^C \tag{6 marks}$$

(b) Use the subsets $A = \{a, c, g, i\}$ and $B = \{b, d, e, f, i\}$ and the universal set

$$\mathcal{E} = \{a, b, c, d, e, f, g, h, i\} \text{ to illustrate that } (A \cap B)^c = A^c \cup B^c.$$
 (6 marks)

(c) Solve for
$$x$$
 in $2\log_3(x+1) - 2 = 2\log_3 x$ (8 marks)

QUESTION FOUR

a) Evaluate the following integrals

(i)
$$\int \frac{dx}{\sqrt{2x+1}}$$
 (5 marks)

(ii)
$$\int xe^x dx$$
 (4 marks)

b) Solve the following system of linear equations using the inverse matrix method:

$$2x - 3y + z = -1$$

$$x - y + z = 0$$

$$3x + 2y + 5z = 11$$
 (11 marks)

QUESTION FIVE

a) Define the following terms as used in Economics:

(i) Consumer's surplus

(2 marks)

(ii) Producer's surplus

(2 marks)

b) If the demand and supply functions under pure competition are given by $p_d(x) = 16 - x^2$ and $p_s(x) = 2x^2 + 4$, respectively, determine the consumer's surplus and producer's surplus at the market equilibrium price. (16 marks)

---END---