

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 302: STEREOCHEMISTRY AND ORGANIC SYNTHESIS

DATE: DECEMBER 2, 2016

TIME: 8:30-10:30AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions

QUESTION ONE (30 MARKS)

a) Using specific examples, explain the following concepts

(3 marks)

- i) Configuration
- ii) Stereogenic center
- iii) Chirality

b) Describe a racemic mixture by use of an appropriate example

(3 marks)

c) Explain one way of resolving racemers

(3 marks)

d) Classify the following compounds as S and R

(3 marks)

$$CH_3$$
 CH_3
 CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_3
 CH_2CH_3
 CH_3
 C

- e) Using a specific example, explain the concept of "retention and "inversion" of configuration in stereo-specific reactions (3 marks)
- f) Using specific examples, illustrate the importance of the following reactions in organic synthesis (3 marks)
 - i) Aldol condensation
 - ii) Claisen condensation
 - iii) Birch reduction
- g) Explain the value of carbanions in organic synthesis (3 marks)
- h) List three examples of stereo-selective reactions (3 marks)
- i) List three factors that affect nucleophilic substitution reactions (3 marks)
- j) List important conditions for the following phenomena (3 marks)
 - i) Cis/trans isomerism
 - ii) Chirality
 - iii) Enantiomerism

OUESTION TWO (20 MARKS)

a) Identify stereo-centers in the following molecule and indicate their configurations as R or S (6 marks)

b) Define optical rotation

(2 marks)

c) Using specific examples, illustrate the following

(6 marks)

- i) Arenium ion intermediate
- ii) Steric hinderance
- iii) Retro-synthetic analysis
- d) Predict the mechanism of the following reaction

(6 marks)

QUESTION THREE (20 MARKS)

a) Using specific examples, describe the following

(8 marks)

- i) Meso compounds
- ii) Diastereomers
- iii) Enatiomers
- iv) Tautomers
- b) Enamine and enols are important synthetic intermediates. With a specific example, illustrate the mechanism of keto-enol interconversion (6 marks)
- c) Illustrate the use of enamines in organic synthesis

(6 marks)

QUESTION FOUR (20 MARKS)

a) With a specific example, illustrate the use of the following reactions in synthesis

(6 marks)

- i) Wolff-Kishner reduction
- ii) Manich reaction
- iii) Micheal addition
- b) Predict the mechanism of the following reaction

(6 marks)

c) Classify the compound below as R or S sol pg 28

(3 marks)

d) Enzymatic reaction can be regarded as stereo-selective. Discuss.

(5 marks)

QUESTION FIVE (20 MARKS)

a) Compare leverotatory and dextorotary molecules with respect to the following

(10 marks)

- i) Optical rotation
- ii) R and S orientation
- iii) Reaction with chiral reagents
- iv) Melting point
- v) Enatiomeric purity

b) Predict the mechanism of the following reactions

(6 marks)

c) Describe how you would separate two enatiomers in the lab

(4 marks)

--END--