

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR SECOND SEMESTER EXAMINATION

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 403: SOLID STATE PHYSICS II

DATE: APRIL 13, 2016

TIME:11:00-1:00PM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions

QUESTION ONE

a)	What guides atomic motions in lattice vibrations?	(2 Marks)
b)	How are sound waves propagated in crystals of solids?	(4 Marks)
c)	What is the simplest structure of a crystal?	(3 Marks)
d)	Differentiate between thermal conductivity and thermal expansion.	(4 Marks)
e)	What is the basis of quantum free electron theory?	(2 Marks)
f)	What are electrons?	(2 Marks)
g)	Give one application of reciprocal lattice.	(2 Marks)
h)	Briefly describe diffraction of x-rays in crystalline solids.	(3 Marks)
i)	Calculate the longest wavelength that can be analyzed by a rock salt	
	crystal of spacing $d = 2.82 \text{ Å}$ in the first order.	(4 Marks)
j)	What lattice vibration with respect to crystalline solids?	(2 Marks)
k)	What is super conductivity in solids?	(2 Marks)

1) The total area of a glass window pane is 0.5 m². The temperature on the inside surface is 2 °C and on the outside surface is 2 °C. Calculate how much heat is conducted per hour through the glass window pane if the thickness of the glass is 0.6 mm. (4 Marks)

QUESTION TWO

Explain a typical magnetization and hysteresis curves for a ferromagnetic material. (20 Marks)

QUESTION THREE

Show that for lattice vibrations of a one dimensional crystal consisting of a chain of identical atoms, the maximum frequency is given by:

(20 Marks)

$$\omega_{max} = \sqrt{\frac{4k}{m}}$$

QUESTION FOUR

Briefly describe how crystallography by powder method can be used to determine the interplaner distance d in solids. (20 Marks)

QUESTION FIVE

Using one dimensional Schrodinger's equation for a free particle for V = 0, show that:

$$En(x) = \frac{h^2 n^2}{8mL^2}$$
--END--