

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 402: NUCLEAR PHYSICS

DATE: APRIL 12, 2016

TIME: 11:00-1:00

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions

The following constants may be useful:

1 electron-volt = $1.6 \times 10^{-19} \text{ J}$

Mass of a proton $m_p = 1.67 \times 10^{-27} \text{ Kg}$

Mass of a electron $m_e = 9.11 \times 10^{-31} \text{ Kg}$

 $1u = 1.660559x \ 10^{-27} \ Kg = 931 MeV$

QUESTION ONE

a) Discuss any three general properties of a nucleus.

(3 Marks)

b) Discuss 4 properties of the nuclear force.

(4 Marks)

c) Distinguish between the "half-life period" and the "mean life time" of radioactive elements.

(2 Marks)

d) The half life period of a certain radioactive sample is 1590 years. After how many years will one gram of the pure element, be reduced to one hundredth of a gram? (3 Marks)

e) Discuss with appropriate examples each of the following nuclear decay.

i) α- decay

(3 Marks)

ii) β- decay

(3 Marks)

iii) γ- decay

(3 Marks)

f) What is the binding energy in MeV of the deuteron if $m_p = 1.007276u$, $m_D = 2.013553u$ and $m_n = 1.008665u$ for deuteron (3 Marks)

g) The gamma emission constant for Cs-137 = 3.3 rad/hr/mCi/cm². If the source strength is 20.31 mCi, find

i) the dose rate at 1 cm (2 Marks)

ii) the dose rate at 25 cm (2 Marks)

iii) the distance at which dose rate will be 200 mrad/hr. (2 Marks)

QUESTION TWO

a) What do you understand by isotopes.

(1 Mark)

b) Give at least 5 examples of applications of isotopes in each of the following fields;

i) Medicine

(5 Marks)

ii) Industry

(5 Marks)

iii) Agriculture

(5 Marks)

c) Given the following isotope masses;

 $_{3}^{7}Li = 7.016004$, $_{3}^{6}Li = 6.015125$ and $_{0}^{1}n = 1.008665$, calculate the binding energy

of a neutron in the $\frac{7}{3}Li$ nucleus expressing your answer in MeV and Joules. (4 Marks)

QUESTION THREE

- a) What is meant by "binding energy" and "mass defect" with respect to a nucleus? (2 Marks)
- b) Calculate the binding energies of the following isobars and their binding energy per nucleon; $_{28}^{64}Ni = 63.9280$, $_{29}^{64}Cu = 63.9298$ (take $M_n=1.009$ and $M_H=1.008$) (6 Marks)
- c) Discuss in details the Liquid-Drop model and Shell model.

d) Estimate the number of ionizations produced per Kg of tissue for an absorbed dose of 1.0 rad. (4 Marks)

QUESTION FOUR

- a) From the Mossbauer spectroscopy, state and explain three types of nuclear interactions that can be observed (6 Marks)
- b) A beam of gamma rays has a cross-sectional area of 2 cm² and carries 7 x 10⁸ photons through the cross-section each second. Each photon has an energy of 1.25 MeV. The beam passes through a 0.75 cm thickness of flesh ($\rho = 0.95 \ g/cm^31$) and loses 5 % of intensity in the process. What is the average dose (in rad) applied to the flesh each second?

(5 Marks)

- c) State 5 genetic effects caused by Over-exposure to radiation. (5 Marks)
- d) The 226Ra nucleus undergoes α -decay with a product of 222Rn. Calculate the disintegration energy of the process. (Mass of 226Ra = 226.02540u, Mass of 222Rn = 222.017574u and Mass of He = 4.00260u). (4 Marks)

QUESTION FIVE

- a) Describe briefly any two Particle accelerators in nuclear physics (4 Marks)
- b) Show that half life $T_{\frac{1}{2}}$ of a radioactive sample is given by $T_{\frac{1}{2}} = 0.693/\lambda \quad \text{where } \lambda \text{ is the decay constant.} \tag{4 Marks}$
- c) The half-life of Radon is 3.8 days. After how many days will only one twentieth of Radon sample be left over (4 Marks)
- d) Classify elementary particles into groups according to their mass and briefly discuss each of them. (8 Marks)

---END---

