

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 305: CLASSICAL MECHANICS

DATE: DECEMBER 30, 2015

TIME: 8:30-10:30

INSTRUCTIONS:

You may use the following constants:

Density of the earth, $\rho = 5.51 \times 10^3 kg/m^3$

Gravitational constant $G = 6.67 \times 10^{-11} Nm^2/kg^2$

Gravitational acceleration, $g = 10m/s^2$

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE: 30 MARKS

- a) Show that $\overrightarrow{P} = \overrightarrow{F(e)}$ which gives the conservation theorem for the linear momentum of a system of particles. (6 marks)
- b) Write down the sequence of the procedures followed when constructing the Hamiltonian by Lagrangian formulation. (5 marks)
- c) Find the principal moment of inertia and the centre of the uniform rectangular plate of size \boldsymbol{a} and \boldsymbol{b} given that the moment of inertia about side \boldsymbol{a} is $\frac{1}{3}mb^2$. (7 marks)

- d) The Atwood machine has two masses M_1 and M_2 connected by an inextensible string of negligible mass passing over a fixed frictionless pulley of negligible mass. Show that the equation of motion is $\chi = \frac{M_1 M_2}{M_1 + M_2} g$ (8 marks)
- e) Differentiate between Holonomic and Non-Holonomic constraints giving example of each. (4 marks)

QUESTION TWO (20 MARKS)

A square plate has side of dimensions *a*. Find:

- a) The principle moments of inertia (10 marks)
- b) The directions of the principle axis at the vertex of the square plate. (10 marks)

QUESTION THREE

- a) Use the Lagrangian methods to construct an equation of the motion of a particle acted by a force \vec{F} with no constraints in the Cartesian coordinates. (15 marks)
- b) A particle of mass 3kg is interconnected to another of mass 2kg through a thin string passing over a suspended pulley as shown in the figure below. Determine the acceleration of the particle system and state any two assumptions made. (5 marks)

QUESTION FOUR

- (a) A bead is sliding on a uniformly rotating wire in a force free space. The wire is straight and rotated uniformly about some fixed axis perpendicular to the wire. Show that $\mathbf{r} = r\omega^2$ (10 marks)
- (b) Using the Hamiltonian method, derive an expression that describes the motion of a particle executing simple harmonic motion. (10 marks)

QUESTION FIVE

(a) Two particles of masses M_1 and M_2 are located on a frictionless double incline and connected by an inextensible mass less string passing over a smooth peg.

Use the principle of virtual work to show that for equilibrium we must have $\frac{Sin\alpha_1}{Sin\alpha_2} = \frac{M_2}{M_1}$ (10 marks)

(b) Use D'Alemberts principle to describe the motion of the masses in question five (a) above. (10 marks)

--END--