

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR SECOND SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 303: SOLID STATE PHYSICS I

DATE: APRIL 11, 2016

TIME: 02:00-04:00

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions

QUESTION ONE

- a) Define the following terms.
 - i) Ohmic conductors
 - ii) Doping
 - iii) P-type semiconductor

(3 Marks)

- b) Giving an example, explain key characteristic of covalent crystals.
- (3 Marks)
- c) With aid of diagrams highlight three different possible arrangement of atoms in solids.

(6 Marks)

- d) i) Giving examples differentiate between ionic and covalent bonds.
- (4 Marks)
- ii) Other than ionic and covalent bonds, describe two other bonds.
- (4 Marks)
- e) Find the electric potential energy of a Na⁺ ion and a Cl⁻ ion separated by 0.24nm.
 - Consider the ions as point charges.,

(4 Marks)

- f) Calculate the barrier potential at room temperature for P-N junction in silicon which is doped to a carrier density of 10²¹m⁻³ on the P-side and 10²²m⁻³ on the N-side. (4 Marks)
- g) Name two main types of defects in crystals

(2 Marks)

QUESTION TWO

- a) With aid of a diagram explain Bragg's law (6 Marks)
- b) For a semiconductor with two bands; the lower band is described by E(k), the upper band by E_0 -E(k). The two bands are separated by an energy gap of 2Δ .
 - i) Calculate the chemical potential as a function of the temperature. (6 Marks)
 - ii) Show that the system can be treated using classical statistics at low temperatures.

(8 Marks)

QUESTION THREE

- a) With aid of three dimensional sketches show the seven crystal lattice structures showing the distances and the angles (14 Marks)
- b) Show Bravais lattice structures for cubic crystal structures

 State materials with cubic crystal structures in (i) above (6 Marks)

QUESTION FOUR

- a) With an aid of energy band diagrams explain difference between insulators, semiconductors and conductors. (6 Marks)
- b) A silicon diode in an adapter rectifying circuit has a carrier density of 10⁻²¹in p material and 10²²m⁻³ in n material, the temperature of the charger changes from 24°C to 42°C, find the change in barrier potential of the diode. (6 Marks)
- c) A conduction wire has a resistivity of $1.54 \times 10^{-8} \Omega m$ at room temperature. There are 5.8 $\times 10^{28}$ conduction electrons per m³. Calculate the mobility and relaxation time of electronics. (8 Marks)

QUESTION FIVE

a) Consider a line of 2N ions of alternating charge \pm q with a repulsive potential energy A/Rⁿ between the nearest neighbours, show that at equilibrium separation

1.
$$U(R_0) = -\frac{2Nq^2 \ln 2}{R_0} \left(1 - \frac{1}{n}\right)$$
 (10 Marks)

b) If the crystals be compressed so that $R_0 \to R_0 (1-\delta)$. Show that the work done in compressing a unit length of the crystal has the leading term $\frac{1}{2}C\delta^2$,

Where

$$C = \frac{(n-1)q^2 \ln 2}{R_0}$$
 (10 Marks)

--END--