

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 405: ELECTRODYNAMICS II

DATE: DECEMBER 9, 2015

TIME: 14:00-16:00

INSTRUCTIONS:

- ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS
- The following constants maybe useful;

Electrical conductivity of Cu $\sigma = 5.9 \times 107$ S/m

Relative permeability $\mu 0=4\pi \times 10-7$ Hm-1

Relative permittivity $\varepsilon 0=8.85 \times 10-12 \text{ Fm-1}$

QUESTION ONE

- a) Distinguish between a linear polarization and circular polarization of a wave. (2 marks)
- b) Define the following terms;

(i) Attenuation

(2 marks)

(ii) skin depth

(2 marks)

(iii)skin effect

(2 marks)

- c) The skin depth of 1MHz radio wave in pure copper is approximately 10⁻⁴m at room temperature. Calculate the skin depth of a wave at 15K when the conductivity has increased by a factor of 10⁴.
 (5 mar
- d) Give a concise account of generation of electromagnetic waves through the following

processes;

(i) Synchrotron radiation

(3 marks)

(ii) Bremsstrahlung radiation

(3 marks)

- e) Briefly, discuss the kinetic and dynamic properties in reflection and refraction of light.

 (6 marks)
- f) With the help of a sketch, Show that the reflection coefficient R is given by;

$$R = \left(\frac{n\cos\theta - \cos\phi}{n\cos\theta + \cos\phi}\right)^2 \quad \text{where } \theta \text{ and } \phi \text{ incident and refraction angles}$$
 (5 marks)

QUESTION TWO

- a) Write down the general set of Maxwell's equations in differential form for time varying fields.
 (4 marks)
- b) From the Maxwell's equations, derive the electromagnetic vector wave equations; $\nabla^2 \vec{B} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} \text{ and } \nabla^2 \vec{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} \text{ in linear, isotropic and charge free medium.}$

(8 marks)

c) From the Maxwell's equations, derive the uncoupled inhomogeneous wave equations

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \rho \quad \text{and} \quad \nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\frac{4\pi}{c} J$$
 (8 marks)

QUESTION THREE

a) (i) Show clearly that Poynting theorem is described by the equation below

$$J.E + \frac{\partial U}{\partial t} + \frac{1}{\mu_0} \nabla .(E \times H) = 0$$
 (8 marks)

- (ii) Give the physical interpretation of each term in the Poynting equation in (i) above (4 marks)
- b) If the radio waves were being propagated in water where ε =80. At the same point in water, the amplitude of electric field is $E = 0.1 \text{Vm}^{-1}$. What will be the poynting vector at that point? (take μ =1) (3 marks)
- c) The electrical conductivity of sea water is about 4 S/m, what is the skin depth for low frequency radio waves of wavelength λ =3000m (5 marks)

QUESTION FOUR

Describe in details the propagation of electromagnetic waves in;

(i) Dielectric medium

(10 marks)

(ii) Conducting medium

(10 marks)

QUESTION FIVE

- a) With the help of a simple sketch, write down the plane wave equations for fields denoted by \vec{E}_I , \vec{B}_I , \vec{E}_R , \vec{E}_R , \vec{E}_R and \vec{B}_T for incident, reflected and transmitted electric and magnetic waves respective, for an em wave incident at a dielectric boundary. (8 marks)
- b) From the equations in (a) above, show that

(i)
$$\frac{E_{oR}}{E_{oI}} = \frac{1-n}{1+n}$$

(ii)
$$\frac{E_{oT}}{E_{ol}} = \frac{2}{1+n}$$

(iii)
$$R = \left(\frac{1-n}{1+n}\right)^2$$

(iv)
$$T = \frac{4n}{(1+n)^2}$$
 (12 marks)

Where E_{ol} , E_{oR} , E_{oT} R and T are amplitudes of the waves, the reflection and transmission coefficients and n is the refractive index as may apply.

--END--