

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR SECOND SEMESTER EXAMINATION

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 102: ELECTRICITY AND MAGNETISM I

DATE: APRIL 7, 2016

TIME: 08:30-10:30AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions

Constants:

 $\mu_0 = 4\pi \times 10^{-7}$

 $E_0 = 8.854 \times 10^{-12} \text{ c}^2/\text{Nm}^2$

QUESTION ONE

a) A cylindrical conductor of radius x = 2cm has conductivity of 2.0×10^5 A/m². Determine the current trough the outer portion of the conductor between radial distances x/4 and x.

(4 Marks)

b) What is charge?

(1 Mark)

- c) The resistance of a platinum wire at 0^{0} C is 4 Ω . What will be the resistance of the wire at 100^{0} C, if the temperature coefficient of platinum is 0.0038^{0} C? (3 Marks)
- d) A vertical rectangular coil of sides 5 cm by 2 cm has 10 turns and carries a current of 2

 A. Calculate the torque on the coil when it is placed in a uniform horizontal field of 0.1 T with its plane parallel to the field. (4 Marks)
- e) Show that the amount of work in bringing a charge d q from one plate of a parallel plate capacitor to the other one is given by:

 (3 Marks)

$$W = \frac{1}{2}CV^2$$

- f) The length of a conductor is 41 cm and it has a cross sectional area of 7 cm². If it is an air cored solenoid with 500 turns, find its self-inductance. (3 Marks)
- g) The resistance of a copper wire 200 m is 21 Ω . If its thickness is 0.044 cm, calculate the specific resistance. (4 Marks)
- h) A galvanometer of resistance 500 Ω can measure currents up to 2 mA. Find the resistance of a resistor if a current of 3 A is to be measured with it. (3 Marks)
- i) A pair of conductors each is currying a current of 10 A and they are at a distance of 10 cm apart. Find the magnitude and the direction of the force per 110 cm length of conductors.
 (3 Marks)
- j) A solenoid of length 20 cm and radius 2 cm is closely wound with 200 turns. Calculate the magnetic field intensity at the center of the solenoid. The current in the solenoid being 5A.

QUESTION TWO

a) Two similar balls of mass, m, are suspended from a silk thread of length, l, and carry similar charges. Prove that the separation distance ,x , is given by

$$x = \left(\frac{q^2 l}{2\pi\varepsilon_0 mg}\right)^{\frac{1}{3}} \qquad \text{when } \theta \text{ is small}$$
 (6 Marks)

b) A linear wire AB is carrying a current I. determine the magnetic field intensity at a point, p, which is at a distance, d, from the conductor center. Assume that the diameter of the wire is negligible. (12 Marks)

QUESTION THREE

a) An alpha particle travels in a circular path of radius 0.5 m in a magnetic field of $B = 1.2 \text{ W/m}^2$. Find:

i) Its speed (4 Marks)

ii) Time period of the revolution (4 Marks)

iii) Its kinetic energy (3 Marks)

b) A parallel plate capacitor consists of two plates of 2 m by 1 m with a space between the plates of 1 mm and is filled with dielectric of relative permeability of 7.0. A potential difference of 300 v is applied across the plate. Find;

i) The capacitance (3 Marks)ii) Charge on the capacitor (2 Marks)

iii) Electric flux density (2 Marks)

iv) Potential gradient (2 Marks)

QUESTION FOUR

a) A copper rod of length x y is moving with a velocity of 5 m/s parallel to a long straight wire carrying a current of 10A. Calculate the induced emf in the rod if its lower end A is 18 cm away from the wire and its upper end is 2 cm away from the wire.

(10 Marks)

b) Three charges of 1/3 x 10⁻⁹ C, 8/3 x 10⁻⁹ c and 10/3 x 10⁻⁹ C are placed at three corners of an equilateral triangle of side 20 cm. find the resultant force on the charge of 10/3 x 10⁻⁹ C.
 (10 Marks)

QUESTION FIVE

- a) A transformer on a utility pole operates at $V_p = 8.5 \text{kV}$ on the primary side and supplies electrical energy to a number of nearby houses at $V_s = 120 \text{V}$. Assuming an ideal step down transformer, a purely resistive load and a power factor of unity:
 - i) Find the turns ratio (4 Marks)
 - ii) If the average rate of energy consumption in the houses is 78 kW, find the rms current in primary and secondary coils of the transformer (6 Marks)
 - iii) Find the resistive load R in the secondary circuit and the corresponding resistive load in the primary circuit. (4 Marks)
- b) A copper wire is stretched such that it becomes 0.1% longer. Find its percentage change in its resistance. (6 Marks)

--END--

