

EMBU UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF THE UNIVERSITY OF NAIROBI)

FIRST SEMESTER EXAMINATIONS 2013/2014

FIRST YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 102: ELECTRICITY AND MAGNETISM 1

DATE: DECEMBER 4, 2013

TIME: 2.00 - 4.00PM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

Constants

Electronic charge, e

 $= 1.602 \times 10^{-19} \text{ C}$

Velocity of light, c

= 3.0 x 10⁸ m/s

1 eV

 $= 1.602 \times 10^{-19} \text{ J}$

Mass of electron, me

= 9.11 x 10⁻³¹ kg

Mass of proton, mp

 $= 1.67 \times 10^{-27} \text{ kg}$

Permittivity, ε₀

 $= 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{Nm}^2$

Acceleration due to gravity, g =

 10 m/s^2

Density of water

 $= 1 \text{ g/cm}^3$

QUESTION ONE:

a) i) Give a summary of coulombs law.

(3mks)

- i) Consider a system containing many charges $q_1, q_2, q_3, ..., q_n$. Demonstrate how to obtain the force F_j on charge q_j due to a number of other charges q_i . (3mks)
- ii) Two similar balls of mass m are hung from silk threads of length, l and carry similar charges. Prove that the separation (4mks)

$$x = \left(\frac{q^2 l}{2\pi\varepsilon_0 mg}\right)^{1/3}$$

- iii) A copper wire has 8×10^{28} atoms per cubic meter and cross-sectional area $5 mm^2$. If a current of 5 A flows through the wire, find the drift velocity of the electrons. (3mks)
- b) i) Differentiate between relative permeability from absolute permeability. (1mk)
- i) Consider a solenoid which is carrying an electric current of 5 A. Show that the magnetic induction for it is given by:- (3mks)

$$\vec{B} = \frac{5\mu_0}{2\pi r}$$

c)

- i) A 100 v d.c supply is used to charge two capacitors in parallel. One of the capacitors is $4\mu F$ and the other 5.0 μF . Determine the energy stored in the capacitors. (3mks)
- ii) Calculate the flux density and field intensity at a distance of **10** cm in air from a north pole with strength of **10**,000 ampere meters. (2mks)

 Also find the force on another north pole of equal strength at this distance. Assume that the poles are at a large distance. (2mks)
- d) An ammeter of resistance 0.80Ω can measure currents up to 1.0~A. Find the shunt resistance to enable the ammeter to measure currents up to 5.0~A. (3mks)
 - i) Consider a rectangle ABCD. At corners BC and D of the rectangle are placed charges $+10 \times 10^{-12} C$, $-20 \times 10^{-12} C$ and $+10 \times 10^{-12} C$ respectively. Calculate the potential at the fourth corner A. Take side AB = 4cm and BC = 3cm. (4mks)

e) A copper rod AB is moving with a velocity of 5m/s parallel to a straight wire carrying a current of 10 A. Calculate the induced emf in the rod if its lower end A is 18cm away from the wire and its upper end B is 2cm away from wire as shown (4mks)

- f) In an oscillatory circuit L = 0.4 Henry and $C = 0.0024 \mu F$. Find the maximum value of reactance for the circuit to be oscillated. (3mks)
- g) The resistance of a platinum wire at $0^{\circ}C$ is 4Ω . Find the resistance of the wire at $100^{\circ}C$. (2mks)

QUESTION TWO

a) A potential difference of 20 KV is applied to a parallel plate capacitor with a plate area of $0.01 m^2$. The plates are separated by a dielectric 2 mm thick. The capacitance of the capacitor is $2 \times 10^{-4} \mu F$. Find

i) Total electric flux.	(2mks)
ii) Potential gradient.	(2mks)
iii) Relative permittivity of the medium.	(3mks)
iv) Energy stored.	(3mks)

b) A standard cell of $emf E_1$, a potentiometer of resistance R, a storage battery of unknown $emf E_2$ and a galvanometer are connected as shown:

Determine the e.m.f of the storage battery if the current ceases to flow through galvanometer when resistance in the section of potentiometer AB = 9 ohms, in this case take E1 is 2V and R is 10 ohms. (5mks)

QUESTION THREE

- a) Two points charges of $12 \times 10^{-10} C$ and $8 \times 10^{-10} C$ are $10 \ cm$ apart. Find the work done in bringing the charges $4 \ cm$ closer. (6mks)
- b) Two wires each 1 m carrying a current of 500 amperes in the same direction are placed with their axis 0.20 m apart. Calculate the force between them per meter length. (3mks)
- c) A solenoid of 1200 turns is wound uniformly in a single layer on a glass tube 2 m long and 0.2 m in diameter. Find the strength of the magnetic field at the center of the solenoid.

(3mks)

d) A milli-voltmeter can read up to a maximum of $800 \, mV$ and has a resistance of $40 \, \Omega$. How can it be converted into a milli-ammeter reading up to $100 \, mA$? (3mks)

QUESTION FOUR

- a) Three charges of $\frac{2}{3} \times 10^{-9} C$, $\frac{8}{3} \times 10^{-9} C$ and $\frac{10}{3} \times 10^{-9} C$ are placed at three corners of an equilateral triangle of sides $20^{\circ} cm$. Find the resultant force on the charge of $\frac{10}{3} \times 10^{-19} C$.
- b) Sketch construction of a moving coil galvanometer and explain its principle of operation.

 (9mks)

QUESTION FIVE

- a) Consider a positive test charge q that is fired with a velocity \overrightarrow{V} through a point p. Suppose the charge experiences a sideways deflection force F. Using a three dimensional reference frame, define the magnetic induction vector. (8mks)
- b) Show that the potential at a point A due to a point charge $\pm q$, at a distance x is given by

$$V = \frac{q}{4\pi\epsilon_0\,\epsilon_r r} \ volts$$

(Assume that the charge is placed in air where $\in_r = 1$) (7mks)