

# EMBU UNIVERSITY COLLEGE (A CONSTITUENT COLLEGE OF THE UNIVERSITY OF NAIROBI)

## **SECOND SEMESTER EXAMINATIONS 2013/2014**

# SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACELOR OF SCIENCE

## SPH 102: ELECTRICITY AND MAGNETISM I

**DATE: APRIL 4, 2014** 

TIME: 2.00 - 4.00PM

#### **INSTRUCTIONS:**

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS.

#### **CONSTANTS**

Electronic charge, e

 $= 1.602 \times 10^{-19} \,\mathrm{C}$ 

Velocity of light, c

= 3.0 x 10<sup>8</sup> m/s

1 eV

 $= 1.602 \times 10^{-19} \,\mathrm{J}$ 

Mass of electron, me

= 9.11 x 10<sup>-31</sup> kg

Mass of proton,  $m_p$ 

= 1.67 x  $10^{-27}$  kg

Permittivity of free space,  $\epsilon_0$ 

 $8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{Nm}^2$ 

Acceleration due to gravity,  $g = 10 \text{ m/s}^2$ 

Density of water  $= 1 \text{ g/cm}^3$ 

#### **QUESTION ONE (30 MARKS):**

- a) Two spheres charged with equal but opposite charges experience a force of 170.5 N when they are placed 20 mm apart in a medium of relative permeability 3. Determine the charge on each sphere.

  (3 marks)
- b) Show that the amount of work done in bringing a charge dq a unit distance in an electric field is equivalent to:  $-W = \frac{1}{2}CV^2$ . (3 marks)
- c) Three capacitors are connected in series across a 75 V supply. The voltages across them are 20 V, 25 V and 30 V respectively and the charge on each is  $3 \times 10^{-3} C$ . Find the capacitance of the combination. (3 marks)
- d) Two rails of a railway track insulated from each other and the ground are connected to a millivolt-meter. What would be the reading of the millivolt meter when the train travels at a speed of  $180 \, km/h$  along the track, given that the horizontal component of earth's magnetic field is  $0.2 \, x \, 10^{-4} \, Wb/m^2$  and the rails are separated by 1 meter. (4 marks)
- e) An air cored solenoid has 300 turns, its length is 25 cm and its cross-section is  $3 cm^2$ . Calculate its self-inductance. (3 marks)
- f) Consider a unit North Pole of strength, m of one weber placed at a point, a distance r, in a magnetic field. Show using unit vector that the magnetic field intensity is given

by 
$$\vec{H} = \frac{m}{4\pi\mu\vec{r}^3}N/Wb$$
 (3 marks)

g) A galvanometer which requires a current of  $I_g$  for full-scale deflection and a galvanometer resistance G is intended for conversion to an ammeter. Taking S to be the shunt resistance to be used, show that: -

$$S = G(\frac{I_g}{1 - I_g}) \tag{4 marks}$$

h) Considering a point A in an electric field whose intensity is  $\vec{E}$ , a unit positive charge is placed at this point and then moved to another point B at a distance dx from point A. show that the electric field intensity  $\vec{E}$  is equal to the rate of change of potential with distance.

(4 marks)

i) Explain three factors upon which capacitance of a capacitor depend on. (3 marks)

### **QUESTION TWO (20 MKS)**

- a) Find the capacitance of coaxial cylinder with insulator of permeability  $\epsilon_r$ , Q is the charge in coulombs per meter and that the potential difference of V is applied between. (7 marks)
- b) Three A, B and C charges of  $\frac{2}{3} \times 10^{-9} C$ ,  $\frac{8}{3} \times 10^{-9} C$  and  $\frac{10}{3} \times 10^{-9} C$  respectively are placed at three corners of an equilateral triangle of side 10 cm. Find the resultant and direction force on the charge of  $\frac{10}{3} \times 10^{-9} C$ .

(13 marks)

### **QUESTION THREE (20 M ARKS)**

a) The resistance of a field coil measures  $55\,\Omega$  at  $25^{0}C$  and  $65\,\Omega$  at  $75^{0}C$ . Find the temperature coefficient of the conductor at  $0^{0}C$ .

- b) Two points charges of  $12 \times 10^{-10}$  C and  $8 \times 10^{-10}$  C are 10 cm apart. Find the work done in bringing the charges 4 cm closer. (7 marks)
- c) Show that the magnetic flux density at a distance x from a long straight wire is given by:

$$-\vec{B} = \frac{\mu_0 I}{2\pi R} \qquad (5 \text{ marks})$$

## **QUESTION FOUR (20 MARKS)**

- a) A wire carrying a current of 100 amperes is bent into the form of a circle of radius 5.08 cm. Calculate the flux density at the center of the coil and flux density perpendicular to the plane of the coil at a distance of 12 cm from the coil. (6 marks)
- b) The figure below shows two batteries in opposition to each other. One has an emf of 6V and internal resistance  $r_1$  of  $2\Omega$  and the other an emf  $E_2$  of 4V and internal resistance  $r_2$  of  $8\Omega$ . Calculate the potential difference  $V_{xy}$  across xy. (8 marks)

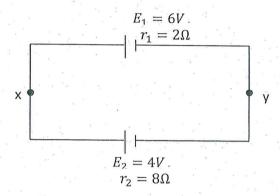



Figure 4.1: Fig. 4.1

c) A long straight conductor x carrying a current of 2A is placed parallel to a short conductor y of length 0.05 m carrying a current of 3A. The two conductors are 0.10 m apart. Calculate the flux density due to x at y and the approximate force on y. (6 marks)

#### **QUESTION FIVE (20 MARKS)**

ABCD is a rectangle. At corners B, C and D of the rectangle is placed charges+ $10 \times 20^{-12}$ C,  $-20 \times 10^{-12}$ C and  $+10 \times 10^{-12}$ C respectively. Calculate the potential at the fourth corner A. the side AB=4cm and BC=3cm. (10 marks)

a) A potential difference of 20KV is applied to a parallel plate capacitor with a plate area of  $0.01\text{m}^2$ . The plates are separated by a dielectric 2mm thick. The capacitance of the capacitor is  $2 \times 10^{-4} \mu F$ . Find:

- i.) Total electric flux. (2)
- ii.) Potential gradient. (2)
- iii.) Relative permeability of the medium. (6)
- iv.) Energy stored. (3)

---END---