

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SMA 425: PARTIAL DIFFERENTIAL EQUATIONS I

DATE: APRIL 11, 2016

TIME: 11:00-1:00

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions

QUESTION ONE

a) Differentiate between linear and non linear partial differential equations. Give one example for each.

(4 Marks)

b) Eliminate the arbitrary constants from the equation $z = (x^2 + a)(y^2 + b)$ and find the corresponding PDE.

(5 Marks)

c) Show that the direction cosines of the tangent at the point (x, y, z) to the conic $ax^2 + by^2 + cz^2 = 1, x + y + z = 1$ are proportional to (by - cz, cz - ax, ax - by)

(4 Marks)

d) Find the general solution of the following partial differential equation px + qy = 3z

(4 Marks)

e) Solve the non-linear partial differential equation

$$pq + qx = y$$

(5 Marks)

f) Determine the necessary and sufficient condition of compatibility of two non-linear first order partial differential equations

$$f(x, y, z, p, q) = 0$$

$$g(x, y, z, p, q) = 0$$

(3 Marks)

g) Find general solution of the partial differential equation

$$(y-z)p + (x-y)q = z - x$$

(5 Marks)

QUESTION TWO

a) Find the integral curves of the set of equations

$$\frac{dx}{mz - ny} = \frac{dy}{nx - lz} = \frac{dz}{ly - mx}$$
 (7 Marks)

b) Find a differential equation arising from

$$\phi(x + y + z, x^2 + y^2 - z^2) = 0$$

(6 Marks)

c) Find the general solution for semi-linear partial differential equation

$$x^{2} \frac{\partial z}{\partial x} + y^{2} \frac{\partial z}{\partial y} = (x + y)z$$
 (7 Marks)

QUESTION THREE

a) Find the orthogonal trajectories on the surface $x^2 + y^2 + 2 fyz + d = 0$ of its curves of intersection with planes parallel to the xy - plane.

(10 Marks)

b) Find the partial differential equation arising from $\phi\left(\frac{z}{x^3}, \frac{y}{x}\right) = 0$, where ϕ is an arbitrary function of the arguments.

(7 Marks)

b) If the rectangular Cartesian coordinates (x, y, z) of a point P in three dimensions are connected by a relation of the form

$$f(x, y, z) = 0$$

then point P lies on the surface and the equation is called equation of the surface. Using this equation derive the directional ratios of the normal and tangent to the surface at point P on the surface.

(3 Marks)

QUESTION FOUR (20 MARKS)-OPTIONAL

- a) Determine the integral surface of the equation $z(x+y)p + z(x-y)q = x^2 + y^2$ (7 Marks)
- b) Find the integral curves of the set of equations

$$\frac{dx}{y(x+y)+az} = \frac{dy}{x(x+y)-az} = \frac{dz}{z(x+y)}$$
(7 Marks)

c) By eliminating the arbitrary constants a and b, find the partial differential equation arising from the family of spheres of radius 5 with centres on the x = y.

$$(x-a)^2 + (y-a)^2 + (z-b)^2 = 25$$
 (6 Marks)

QUESTION FIVE

a) Show that the following Pfaffian differential equation is integrable $(y^2 + yz)dx + (xz + z^2)dy + (y^2 - xy)dz = 0$

Hence, show that keeping z constant, the integration of the equation yields the following relation.

$$\frac{y(x+z)}{y+z} = F(z) \quad \text{where, } F(z) \text{ is an arbitrary function of } z$$

(10 Marks)

b) Find the general integral surface of the quasi-linear partial differential equation

$$x(y^{2} + z)p - y(x^{2} + z)q = (x^{2} - y^{2})z$$
(10 Marks)