

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SMA 401: TOPOLOGY I

DATE: NOVEMBER 30, 2015

TIME: 8:30-10:30

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

(a) Let *X* be a non-empty set. Describe what is meant by the following terms:

i)	A metric on X	(2 marks)
ii)	A topology on <i>X</i>	(2 marks)

iii) A finer topology

(b) Consider a function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$d(x, y) = |x - y|, \quad \forall x, y \in \mathbb{R}$$

Prove that *d* is a metric on \mathbb{R} .

- (c) List all topologies on the set $X = \{a, b\}$
- (d) Let X, Y, and Z be topological spaces. Further, let $f: X \to Y$ and $g: Y \to Z$ be functions between the topological spaces.
 - (i) Describe what it means for the function $f: X \to Y$ to be continuous. (2 marks)
 - (ii) Prove that if $f: X \to Y$ and $g: Y \to Z$ are continuous functions, then the composite function $(g \circ f): X \to Z$ is continuous. (4 marks)

Page 1 of 3

(4 marks)

(1 marks)

- (4 marks)

(e) Consider a topology $\tau = \{\emptyset, X, \{1\}, \{1,2,5\}, \{1,2,3,4\}, \{1,3,4\}\}$ on the set $X = \{1,2,3,4,5\}$ and				
	a subset $A = \{3,4,5\}$ of X. Determine			
	(i) the derived set of A	(3 marks)		
ля. , j	(ii) the closure of A	(2 marks)		
	(iii)the interior of A	(2 marks)		
	(iv)the relative topology on A	(2 marks)		
(f)	Describe what is meant by a T ₁ topological space	(2 marks)		
Q	JESTION TWO			
a)) Let (X, τ) be a topological space and A a subset of X. Describe what is meant by			
	(i) the boundary of A	(2 marks)		
	(ii) a relative topology for A	(2 marks)		
b)) Prove that the intersection of any two topologies, τ_1 and τ_2 , on a non-empty set X is a			
	topology on X	(6 marks)		
c)	Prove that a relative topology is a topology	(10 marks)		
QUESTION THREE				
a)	Describe what it means for a topological space (X, τ) to be			
	i) connected	(2 marks)		
	ii) compact	(3 marks)		
b)	b) Let (X, τ) be a topological space, where $X = \{a, b\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Determine whether			
	(X, τ) is connected.	(3 marks)		
c)) Let $f: X \to Y$ be a continuous surjection from topological space X to topological space Y.			
	i) Prove that if <i>X</i> is connected, then <i>Y</i> is connected	(6 marks)		
	ii) Prove that if <i>X</i> is compact, then <i>Y</i> is compact	(6 marks)		
QI	JESTION FOUR			
(a) Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a function from topological space (X, τ_X) to topological space				
(Y, τ_Y) . Describe what it means for <i>f</i> to be				
	(i) continuous at a point $p \in X$	(2 marks)		
	(ii) a homeomorphism	(2 marks)		
(b)	Prove that the identity function from a topological space to itself is continuous	(3 marks)		

2

Page 2 of 3

(c) Prove that homeomorphism is an equivalence relation over topological spaces (13 marks)

QUESTION FIVE

- (a) Let (X, τ) be a topological space. Describe what it means to say that
- (i) 𝔅 is a basis for the topology on X
 (3 marks)
 (ii) M is an open neighborhood of x ∈ X
 (2 marks)
 (iii) X is a Hausdorff space (or X is a T₂- space)
 (3 marks)
 (b) Show that every subspace of a T₂-space is a T₂-space
 (3 marks)
- (c)
 - (i) Describe what it means for a sequence {x_n} in a topological space (X, τ) to converge to a point in X
 (3 marks)
 - (ii) Let X be a Hausdorff space. Prove that if {x_n} is a sequence in X with x_n → x and x_n → y, then x = y. In other words, prove that limits of sequences in Hausdorff spaces are unique, where they exist.