

EMBU UNIVERSITY COLLEGE (A CONSTITUENT COLLEGE OF THE UNIVERSITY OF NAIROBI)

FIRST SEMESTER EXAMINATIONS 2014/2015

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SMA 341: PROBABILITY AND STATISTICS II

DATE: DECEMBER 11, 2014

TIME: 08:00 - 10:00AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

a) Prove that if A is non – countable and $A \subset B$, then B is also non – countable.

(3 marks)

b) i) Define the probability space.

(5 marks)

ii) The measure P is σ - additive. For events A_n , $n \ge 1$, show that

$$P(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} P(A_n)$$
 (4 marks)

- c) Let X be a random variable with probability generating function G(S). Find the generating function of Y = X + 1 (4 marks)
- d) Let X_1, X_2, X_3 and X_4 be a random sample of size 4 from the distribution having probability distribution function

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & e/w \end{cases}$$

If $Y_1 < Y_2 < Y_3 < Y_4$ are the order statistics corresponding to this sample,

- i) Find the probability distribution function of Y_3 and then (4 marks)
- ii) Compute $\Pr(\frac{1}{2} < Y_3)$. (5 marks)

e) Let
$$\underline{x} \sim N(\mu, \Sigma)$$
, $\underline{\mu} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and $\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Let $y_1 = x_1 + x_2$, $y_2 = x_2 + x_3$.

Find the joint distribution of y_1, y_2 .

(5 marks)

QUESTION TWO

a) Compute an approximate probability that the mean of a random sample of size 20 from a distribution having p.d.f.

$$f(x) = \begin{cases} 4x^3, & 0 < x < 1 \\ 0, & e/w \end{cases}$$

is between 0.75 and 0.90.

(6 marks)

b) Show that $\frac{S(1+S)}{(1-S)^3}$ is the generating function of the sequence

$$\{0^2,1^2,2^2,3^2\cdots\}$$

(8 marks)

c) Suppose that X_1, X_2, X_3 are independent random variables and that each has a standard normal distribution. Find $P(3X_1 + 2X_2 - 6X_3 < -7)$. (6 marks)

QUESTION THREE

- a) One of the numbers 1, 2, 3, 4, 5 and 6 is to be chosen by casting an unbiased die. Let this random experiment be repeated five independent times. Let the random variable X_1 be the number of terminations in the set $\{x; x = 1, 2, 3\}$ and let the random variable X_2 be the number of terminations in the set $\{x; x = 4, 5\}$. Find $P\{X_1 = 2; X_2 = 1\}$ (10 marks)
- b) Let $\underline{x} = (x_1, x_2, x_3)$ be jointly normally distributed as

 $f(\underline{x}) = ke^{-\frac{1}{2}Q}$ where $Q = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2$. Identify the mean vector $\underline{\mu}$, the variance covariance matrix Σ and the constant k. (10 marks)