

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SMA 322: NUMERICAL ANALYSIS I

DATE: APRIL13, 2016 TIME: 02:00-04:00

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

- a) Use examples to distinguish between chopping and rounding off methods of determining the floating point form of a positive real number. (4 Marks)
- b) Evaluate the approximate maximum error in 7.18×96.1 . (5 Marks)
- c) Using the nodes $x_0 = 2$, $x_1 = 2.5$ and $x_2 = 4$, find the second interpolating polynomial for $f(x) = \frac{1}{x}$. (5 Marks)
- d) i) Find the approximate value of $I = \int_0^2 \frac{dx}{1+x}$ using Simpson's rule. (4 Marks)
 - ii) Obtain a bound for the errors. The exact value of I = In2 = 0.693147 correct to six decimal places. (2 Marks)
- e) Perform 5 iterations of the secant/chord method to obtain the root of the equation $\cos x xe^x = 0$ taking the initial approximations as $x_0 = 0$, $x_1 = 1$.

(5 Marks)

f) Calculate $\int_0^{1/2} \frac{x}{\sin x} dx$ using the trapezoidal rule with $h = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ and Romberg integration. Assume f(0) is taken as the limiting value. (5 Marks)

QUESTION TWO

- a) Find the quadrature formula $\int_0^1 f(x) \frac{dx}{\sqrt{x(1-x)}} = \alpha_1 f(0) + \alpha_2 f\left(\frac{1}{2}\right) + \alpha_3 f(1) \text{ which is}$ exact for polynomials of highest possible degree. (15 Marks)
- b) Use the formula in (a) above to evaluate $\int_0^1 \frac{dx}{\sqrt{x-x^3}}$. (5 Marks)

QUESTION THREE

- a) i) Given X and Y are real numbers whose approximations are X^x and Y^x respectively, derive an expression for the maximum possible relative error in $\frac{X^x}{Y^x}$. (7 Marks)
- ii) Hence determine the maximum relative error in $\frac{16.72}{11.9}$. (3 Marks)
- b) Given that f(0) = 1, f(1) = 3, f(3) = 55, find:
 - i) The unique polynomial of degree two or less, which fits the given data. (8 Marks)
 - ii) The bound on the error. (2 Marks)

QUESTION FOUR

- a) Given that $f(x) = xe^x$, calculate the approximate value of f'(2.0) using:
 - i) 3 point formula with h = 0.1. (3 Marks)
 - ii) 5 point formula with h = 0.1. (3 Marks)
- b) What is the sum of the binary numbers 1101 and 111 in decimal system? (2 Marks)
- c) Use Romberg Integration to compute R_{61} for the function $\int_0^{\pi} Sinx dx$ with n = 6. Compare your answer with the exact value. (8 Marks)

d) For the following data, calculate the differences and obtain the forward and backward difference polynomials. (4 Marks)

$$x$$
 0.1 0.2 0.3 0.4 0.5 $f(x)$ 1.40 1.56 1.76 2.00 2.28

QUESTION FIVE

a) Use the Newton-Raphson method to approximate the solution of the non-linear system (6 Marks)

$$x^2 + y^2 = 4$$
$$x - y = 0$$

in the 1st quadrant (x, y) given that $(x_0, y_{0)} = (1,1)$ with n=5

b) The following values of the function f(x) = cosx + sinx are given

$$x = 10^{\circ} = 20^{\circ} = 30^{\circ}$$

$$f(x)$$
 1.1585 1.2817 1.3660

i) Construct the quadratic interpolating polynomial that fits the data.

(8 Marks)

ii) Hence find
$$f\left(\frac{\pi}{12}\right)$$
. Compare with the exact value.

(3 Marks)

c) Given that
$$f(x) = x^2 e^x$$
, approximate $f''(3)$ using $h = 0.1$.

(3 Marks)

--END--