

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SMA 302: REAL ANALYSIS II

DATE: APRIL 12, 2016

TIME: 02:00-04:00

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

a) i) Let K denote a space of real or complex numbers. Distinguish between pointwise convergence and uniform convergence of a sequence of functions $\{f_n\}$ on K.

(2 Marks)

ii) Prove that if $f_n(x)$, $g_n(x)$ are sequences of convergent functions of real numbers with limits f(x), g(x) respectively and $f_n(x) \le g_n(x) \ \forall \ n \in \mathbb{N}$ then $f(x) \le g(x)$

(5 Marks)

b) Prove that if p < 1, then the series $\sum_{n \in N} \frac{1}{n^p}$ is divergent.

(4 Marks)

c) i) Define a monotonic (increasing) function

(1 Mark)

ii) Show that all the monotonic functions on bounded interval are of bounded variation

(5 Marks)

- d) Define a Dirichlet function. Hence show that a Dirichlet function on the interval [a, b] is not Riemann Integrable. (4 Marks)
- e) Show that for positive numbers x and y, $x^{logy}/y^{logx} = 1$. (2 Marks)
- f) Define the Lebesgue Integral of the function f with respect to the measure μ over the set E. (3 Marks)
- g) Prove that if the function f(x) is odd on the interval $(-\ell, \ell)$, then $\int_{-\ell}^{\ell} f(x) dx = 0$ (3 Marks)

QUESTION TWO

- a) Show that in general absolute convergence of series implies convergence in a metric space (K, d) and by using an appropriate counter example illustrate that the converse need not to be true. (6 Marks)
- b) State and prove Comparison test (Weiertrass M-Test) for convergence of series of real valued functions (7 Marks)
- c) State the D'Alembert's Ratio Test for convergence of an infinite series. Hence prove that if l < 1 in the statement of the test, then the series is convergent. (7 Marks)

QUESTION THREE

- a) Discuss the following concepts as used in real analysis
 - i) A partition of a closed interval [a, b]

(1 Mark)

ii) The Riemann's' upper sum and lower sum of the function f

(4 Marks)

iii) The Riemann Stieltjes Integrable function on [a, b]

(3 Marks)

b) Show that the function f(x) = x is Riemann Integrable in [0,1] and that $\int_0^1 f(x) = \frac{1}{2}$. (8 Marks)

c) Let f(x) = x for $a \le x \le b$ and define α on [a, b] by $\alpha x = 0$ for $a \le x < b$ with $\alpha(b) = c$. If (P, t) is a tagged partition of [a, b] with the partition P, define the Riemann Stieltjes sum by $t_n c$. Show that $\int_a^b x d\alpha(x) = bc$.

(4 Marks)

QUESTION FOUR

a) i) Define a bounded variation function f on a closed real valued interval [a, b].

(2 Marks)

ii) Hence prove that if f is a bounded variation function on [a, b], then f is bounded.

(6 Marks)

b) Sketch graphs of an exponential function $f(x) = a^x$ and a logarithmic function $f(x) = log_a x$ on the same axes (a > 0, taking a = 2). What relationship exists between the two graphs of functions? Hence state any three differences in these graphs.

(8 Marks)

c) Prove that for
$$a, b > 0$$
 $(a, b \neq 1)$, $log_a(x) = \frac{log_b(x)}{log_b(a)}$ (4 Marks)

QUESTION FIVE

a) Define the Fourier series of the function f(x) on the interval -l to l.

(5 Marks)

b) Find the Fourier series of the function defined by

(10 Marks)

$$f(x) = 0$$
, for $-\pi < x < 0$, and $f(x) = x$ for $0 < x < \pi$.

c) List any five evident properties of a Lebesque integrable function

(5 Marks)

--END--