

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.mucst.ac.ke Email: info@mucst.ac.ke

University Examinations 2012/2013

FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR CERTIFICATE/DIPLOMA IN AGRICULTURE

BUS 0161: FARM ACCOUNTING AND AGRIBUSINESS MANAGEMENT

DATE: AUGUST 2013 TIME: 1½HOURS

INSTRUCTIONS: Answer questions **one** and any other **two** questions

QUESTION ONE – (30 MARKS)

a. Define production function and explain the three ways of presenting the production function.

(5 Marks)

b. List the assumptions of the production function.

(5 Marks) (5 Marks)

c. Distinguish between variable and fixed costs. d. By use of relevant diagram, distinguish between iso-cost and budget line.

(5 Marks)

e. List the properties of a good packaging material.

(5 Marks)

f. Highlight the characteristics of Agricultural products.

(5 Marks)

QUESTION TWO - 15 MARKS

Given that a given level of output Q can be produced using various combinations of factor inputs X_1X_2 .

X ₁ Kg	37	20	13	11	8	6.5	4	2
X_2Kg	10	20	30	40	50	60	70	80

Required:

a. Draw an iso-quant and an iso-cost, given that P_{x1}=Ksh60, P_{X2}=Ksh30 (10 Marks)

b. Estimate the optimal combinations of X_1X_2 units that minimizes costs of production. (3 Marks)

c. Calculate the least cost. (2 Marks)

QUESTION THREE – 15 MARKS

You are provided with the following possible output combinations of products Y_1, Y_2 . Given that the price of $Y_1=16$ \$, and $Y_2=39$ \$.

Output Y ₁	0	7	12	18	22	25	30
Output Y ₂	48	49	37	30	20	11	0

Required:

a.	On a suitable grid plot Y_2 against Y_2 .	(8 Marks)
b.	Using a suitable Iso-revenue curve establish the optimal Y_1 , Y_2 combinations.	(4 Marks)
c.	Calculate the optimal revenue possible.	(3 Marks)
QU	UESTION FOUR – 15 MARKS	
Di	scuss the monopolistic market in the following areas:	
a.	Sources of monopoly power.	(4 Marks)
b.	Characteristics	(5 Marks)
c.	Profit maximization	(6 Marks)
QU	UESTION FIVE – 15 MARKS	
a.	Explain the importance of grading of agricultural products.	(8 Marks)
b.	Explain giving examples the 4-ps in marketing.	(7 Marks)